Energy Spectrum Measured by the Telescope Array Experiment

147 members, 36 institutions, from US, Japan, Belgium, Korea, Russia, and Czech Republic http://www.telescopearray.org

ICRC2019

Madison, WI, USA

Dmitri Ivanov University of Utah 07/27/2019 17:45-18:00 ICRCR 2019, Madison, WI, USA

Telescope Array
Hybrid detector

Millard County, UT 39.3° N, 112.9° W, Alt. 1400m (~880g/cm² of air)

507 Surface Detector (SD)
counters 1.2km apart
+103 TALE infill array
counters of 400m and 600m
spacing

3 Fluorescence Detector sites (FD): BR, LR, and MD/TALE/TAX4MD ²

SD Event

- Plastic scintillation counters
 sensitive to e[±], γ, μ[±], ...
- Time fit -> primary particle trajectory
- Lateral distribution fit -> Signal Size 800 m (S800) from shower axis -> primary particle energy

TA SD Spectrum (2008/05/11 - 2019/05/11)

TALE FD Monocular Events

Figure 5: A five-telescope fluorescence event. The display panels show the event image (PMT trigger pattern), the reconstructed shower profile with relative contributions of FL/CL and scattered CL, and the time progression of triggered PMTs.

Figure 6: A one-telescope Cherenkov event. The display panels show the event image (PMT trigger pattern), the reconstructed shower profile with relative contributions of FL/CL and scattered CL, and the time progression of triggered PMTs.

TALE FD Monocular Spectrum

Combined TA Spectrum

Compare with HiRes

Compare with IceTop

Compare with KASCADE-Grande and Auger

TA Spectrum Declination Dependence

- UHECR2016, ICRC2017 result that uses 7 years of TA SD data
- 3.9 σ difference in the cutoff energies between TA lower and higher declination band spectra
- TA and Auger cutoff energies within $0.5\ \sigma$ in the TA-Auger Common Declination Band
 - $(-15.7^{\circ} < \delta < 24.8^{\circ})$

4 years of independent TA SD data

Effect persists in an independent 4-year data set

Using 11 years of SD data

- Cutoff energies in lower and higher declination bands now 4.7 σ different.
 - 4.3 σ global chance probability of the effect
- Strong evidence of cosmic ray spectrum declination dependence in the Northern Hemisphere

Could it be caused by a systematic uncertainty?

- Instead of looking North and South $(\delta < 24.8^{\circ})$ and $\delta > 24.8^{\circ})$, compare equatorial east and west spectra averaged over time $(\tilde{\delta} < 24.8^{\circ})$ and $\tilde{\delta} > 24.8^{\circ})$
- If there are no systematic biases with respect to local horizonal coordinates, must measure identical spectra

Result

- Time averaged equatorial east and west spectra have same power laws, same cutoff energies, and their ratio is 1.00 ± 0.02
- Stringent test of systematics uncertainties

Also: Check Using Constant Intensity Cut (CIC) Reconstruction Method

Energy spectra derived by TA Standard and CIC methods agree: their ratio is 1.00 ± 0.01

TA SD Full Sky Spectrum (-16° < Declination < 90°)

In Declination Bands, Constant Intensity Cut vs TA Standard Methods

Ratio of the two methods is 1.00 ± 0.02

Summary

- Cosmic ray spectrum measured over 5 orders of magnitude in energy by TA and TALE
- Detected 5 spectral features
- Strong evidence of the spectrum anisotropy in the Northern hemisphere (4.3 σ global chance probability) at the highest energies, which cannot be explained by systematic uncertainties
 - Stringent equatorial east/west systematics check performed and possible systematic effects restricted to ±2%
 - Alternative model-independent energy reconstruction method used to cross-check the results, ±2% agreements over different declination bands

Backup Slides

TA, ICETOP, Yakutsk, and Tunka

Auger-TA Common Declination Band

- First proposed at UHECR 2014
- Upper limit of Auger vertical SD analysis is δ =24.8°
- Splits TA data into lower and higher declination bands at δ =24.8°
- Auger-TA Common
 Declination Band consists
 of a declination range
 (-15.7° < δ < 24.8°)

TA SD Resolution and Sensitivity by Monte Carlo Simulation

Comparison of distributions of the data (**black points**) and MC (red line)

- Detailed Monte Carlo based on CORSIKA program used for resolution and exposure calculations
- TA SD Resolution:
 - 19% energy, 1.5° angular, E > 10^{19.0} eV
 - 29% energy, 2.1° angular, $10^{18.5}$ eV < E < $10^{19.0}$ eV
 - 36% energy. 2.4° angular, $10^{18.0}$ eV < E < $10^{18.5}$ eV

Monte Carlo check: time fit residuals

- Test the time fit formulas derived from the TA SD data
- Each entry = counter, plots are over all counters and over all events
- Normalized residual = (counter time fit time) / T_S
- Plotted versus (perpendicular) distance from the shower axis
- Data and Monte-Carlo fit in the same way

Monte Carlo Check: lateral distribution fit residuals

- Each entry = counter, plots are over all counters and over all events
- Normalized residual = (counter ρ fit ρ) / σ_{ρ}
- Plotted versus (perpendicular) distance from the shower axis
- Data and Monte-Carlo fit to the AGASA LDF in the same way

DATA and MC chi2/dof

(a) χ^2/dof of the geometry fit.

(b) χ^2/dof of the lateral distribution fit.

DATA and MC fitting uncertainties

(c) Fit uncertainty of the event arrival direction.

(d) Fractional uncertainty on (fitted) signal size 800 m from the shower axis.

QGSJET-II.3 proton MC Xmax agrees with TA data

Looking at other hadronic models

SD energy from the hadronic models relative to the FD

(B.T. Stokes, D. Ivanov study made for ICRC-2013)

TA SD results not sensitive to hadronic models above 10¹⁹ eV

SD Energy Reconstruction - Standard TA Method

- Look-up table made from Monte-Carlo
- Energy (E^{TBL}) is a function of reconstructed S800 and $sec(\theta)$
- Calibrate to FD using *constant* scaling factor: $E = E^{TBL}/1.27$

SD energy scale set to FD using hybrid events

- Energy scale locked to the FD to reduce the systematic due to the model
- Use events well reconstructed separately by SD and FD in hybrid mode:
 - SD ∩ [BR U LR U MD Hybrid]
- $-E^{\text{FINAL}} = E^{\text{TBL}} / 1.27$
- TOP figure: E^{FINAL} vs E^{FD} scatter plot
- BOTTOM figure: histogram of EFINAL / EFD ratio

SD Energy Reconstruction - Constant Intensity Cuts (CIC) Method

- Attenuation curve from SD data
- $S_{34} = S800 / CIC(\theta)$ is S800 of a shower of the same energy if it came at $\theta = 34^{\circ}$
- Lock S₃₄ to FD energy using hybrid events

Use reconstruction method independent of Monte Carlo to cross-check SD energy spectrum

Nonlinearity sources above 10¹⁹ eV in TA

Source of Nonlinearity	Amount (percent per decade above 1019 eV)
FD missing energy correction	1% +/- 1%
FD Fluorescence Yield Model	-1% +/- 1%
FD Atmospheric Conditions	1.7% +/- 1%
SD and FD comparison:	-2% +/- 9%
Net	-0.3% +/- 9%

Linearity check of SD with FD using hybrid events: no evidence of nonlinearity

Comparison of SD energies reconstructed using either QGSJET-II.3 proton model or Constant Intensity Cut method to FD shows no evidence of nonlinearity: the slopes of the linear fits are within their fitting uncertainties.

Check constant intensity cuts method using TA SD Monte Carlo

LEFT: TA SD Monte Carlo has the same CIC attenuation as the data

RIGHT: S₃₄ and energy relation is the same in TA SD Monte Carlo as that between the TA SD and TA FD data

Energy Comparison between Constant Intensity Cut and Standard TA Reconstructions

Individual event energies reconstructed by the standard TA and the Constant Intensity Cut methods agree at ~3% level

Check of FD energies

Maximum possible non-linearity effects of atmospheric conditions are 1.7% per decade

More FD checks

 UHECR 2016: It was shown that non-linearity effects of the fluorescence yield and missing energy correction are within 1% per decade above 10¹⁹ eV

Declination Dependence of the Spectrum Without the TA Hot Spot

Using 7 years of TA SD data (2008/05/11-2015/05/11)

- Exclude a 20° region around TA Hot Spot RA,DEC=(148.4°,44.5°)
- Result: second break points
 - 19.59 ± 0.06 (below 24.8° in declination)
 - 19.81 ± 0.04 (above 24.8° in declination)
- Consistent with what we've found previously but the difference is less significant (~3 σ instead of 3.9 σ)

Remaining difference with Auger in the common declination band

(7 years SD data)

- TA and Auger spectra can be brought to agreement after a correction of Auger energies by +10%, and TA energies by -10% per decade, starting at 10¹⁹ eV.
 - Second break points of Auger and TA would then be (log₁₀ (E/eV)): 19.58 +/- 0.03 for Auger and 19.56 +/- 0.06 for TA
- TA energy estimation nonlinearity evaluated as -0.3 +/- 9% above 10¹⁹ eV and spectrum has been checked using two different reconstruction methods.

Q. What about the TA and Auger **full sky spectra** (not just in common declination band) when $\pm 10\%$ correction is applied to TA and Auger in opposite directions?

(7 years SD data)

Higher declination band TA

- Small difference in full sky TA and Auger spectra persists because TA and Auger view different skies and there is an evidence of declination-dependent anisotropy in TA.
- The difference becomes more visible when one compares Auger full sky spectrum to the TA spectrum above 24.8° degrees in declination.

→ For the TA - Auger spectrum working comparison purposes we use TA spectrum in the TA-Auger common declination band (-15.7°, 24.8°)

Result robust after nonlinearity shifts up to ±20% per decade of energy

