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Starburst galaxies as sources
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galaxies with high star formation rate
production of supernovae
most star forming regions around the center

overall production of winds collectively create expanding
bubbles
scenario for shock acceleration
multiple shocks: hardening of the spectrum
[doi:10.1017/S1323358000019858]

f(p) ∝ p−4 −→ f(p) ∝ p−3
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Supporting evience
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from the PAO highlights by Antonella Castellina
suppression in the spectrum above 50± 7EeV

intermediate scale anisotropy: SBG catalogue correlation
▶ above 38EeV
▶ angular scale 15◦

▶ rejection of isotropy at 4.5σ

spectrum at the source ∼ 1− 1.5 [1612.07155, 1505.02153]
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Observed end of the spectrum
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suggested explanations
GZK
end of steam

our approach is to combine both at SBGs
if acceleration lasts enough, the CMB becomes relevant
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Acceleration mechanism
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Magnetic field
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luminosity carried by the plasma [doi:10.1086/191522]

0.035 ≲ LB/LIR ≲ 0.35

LB ∼ 1

8
u R2

SW B2

bounds on magnetic field for LIR ∼ 1043.9 erg/s

15µG ≲ B ≲ 150µG
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CMB mean free path
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CMB photons excite giant dipole resonance producing
nuclei photodisintegration
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Acceleration vs photodisintegration
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pdf of photodisintegration at a time in [t, t+ dt]
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Energy cutoff
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energy cutoff at peak of h
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dτ
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= 0

wide distribution → dispersion in maximum energy
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Constraints on SBGs parameters
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maximum energy: SBG lifetime vs photodisintegration

short lifetime: τ -limited maximum energy
long lifetime: CMB-limited maximum energy

for a given Emax
smaller B and larger τ
larger B and smaller τ
impossible

E = 1020 eV
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Current work
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tune the composition ratios to find the all particle
spectrum
calculate the spectral index
understand and solve the transport equation at the wave
front with CMB absorption for a single species
couple the equations for different species
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