Solar Modulation of Cosmic Rays in a Semi-Analytical Framework

Marco Kuhlen, Philipp Mertsch

Institute for Theoretical Particle Physics and Cosmology (TTK)
Understand cosmic ray fluxes at low energies to interpret potential dark matter signals.

Cuoco et al. arXiv:1903.01472

Disentangle modulation of galactic cosmic rays from processes in the heliosphere.

Johannesson et al. arXiv:1602.02243
Solving the Transport Equation

computational expense

Force-field
✓ fast
✗ inaccurate
✗ local

Gleeson & Axford 1968

Numerical codes
✗ slow
✓ accurate
✓ global

Aslam et al., arXiv:1811.10710,
Boschini et al., arXiv:1704.03733,
Vittino et al., arXiv:1707.09003,
Kappl, arXiv:1601.02832
Computational Expense

<table>
<thead>
<tr>
<th>Method</th>
<th>Fast</th>
<th>Accurate</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force-field</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Semi-analytical</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>Numerical codes</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Force-field: **✓** fast, **X** inaccurate, **X** local
- Semi-analytical: **✓** fast, **✓** accurate, **X** local
- Numerical codes: **X** slow, **✓** accurate, **✓** global

Gleeson & Axford 1968

Rewrite the transport equation as
\[\frac{\partial f}{\partial t} + \nabla \cdot \left(CVf - K \cdot \nabla f \right) + \frac{1}{3p^2} \frac{\partial}{\partial p} \left(p^3 V \cdot \nabla f \right) = Q, \]
with Compton Getting factor
\[C \equiv -\frac{p}{3f} \frac{\partial f}{\partial p}. \]

Assumptions:
- Steady state, \(\frac{\partial f}{\partial t} = 0 \)
- No sources, \(Q = 0 \)
- No average momentum loss in lab frame, \(\langle \dot{p} \rangle = \frac{1}{3} V \cdot \nabla f / f = 0 \)

Zero streaming condition:
\[CVf - K \cdot \nabla f = 0. \]
Assuming spherical symmetry:

\[
\frac{\partial f}{\partial r} + \frac{Vp}{3\kappa} \frac{\partial f}{\partial p} = 0,
\]

Method of characteristics:

\[
\int_{p_{TOA}}^{p_{LIS}} \frac{\beta \kappa_p'}{p'} dp' = \int_{r_{TOA}}^{r_{LIS}} \frac{V}{3\kappa_{r'}} dr' \equiv \phi(r),
\]

For \(\kappa_p \propto p \) and \(\beta \approx 1 \) \(\rightarrow \) \(\phi = p_{LIS} - p_{TOA} \).

Conservation of the phase-space density \(f \) leads to:

\[
\frac{J_{TOA}}{p_{TOA}^2} = \frac{J_{LIS}}{p_{LIS}^2}.
\]
Explanation of current data requires charge sign dependent effects.

$R_e = \frac{\Phi_{e^+}}{\Phi_{e^-}}$

Importance of drifts.

To explain the AMS-02 data we make modifications to the force field model.
Starting again from divergence free streaming:

\[\int_S (C \mathbf{V} f - \mathbf{K} \cdot \nabla f) \cdot d\mathbf{S} = 0 \]

Solve the transport equation in 2D including gradient curvature drifts.

Where we introduce angular averages:

\[\tilde{f} = \int_0^{\pi/2} d\theta \sin \theta f \]

\[\tilde{V} = \left(\frac{\partial \tilde{f}}{\partial p} \right)^{-1} \int_0^{\pi/2} d\theta \sin \theta V \partial_p f \]

\[\tilde{K}_{rr} = \left(\frac{\partial \tilde{f}}{\partial r} \right)^{-1} \int_0^{\pi/2} d\theta \sin \theta K_{rr} \partial_r f \]

\[\tilde{v}_{gc,r} = \left(\tilde{f} \right)^{-1} \int_0^{\pi/2} d\theta \sin \theta v_{gc,r} f \]
After angular averages this reduces to

\[
\frac{\partial \tilde{f}}{\partial r} + \frac{p \tilde{V}}{3 \tilde{K}_{rr}} \frac{\partial \tilde{f}}{\partial p} = -\frac{\tilde{v}_{gc,r}}{\tilde{K}_{rr}} \tilde{f}
\]

Can be solved using the method of characteristics

\[
\tilde{f}(r, p) = f_{\text{LIS}}(p_{\text{LIS}})
\]

\[
e^{-\int_0^r dr' \frac{\tilde{v}_{gc,r}(r', p'_{\text{LIS}})}{\tilde{K}_{rr}(r', p'_{\text{LIS}})}}
\]

With \(p_{\text{LIS}}(r, p)\) the solution to the initial value problem

\[
\frac{dp}{dr} = \frac{p \tilde{V}}{3 \tilde{K}_{rr}},
\]

with \(p_{\text{LIS}}(R, p) = p\).
After angular averages this reduces to

$$\frac{\partial \tilde{f}}{\partial r} + \frac{p \tilde{V}}{3 \tilde{K}_{rr}} \frac{\partial \tilde{f}}{\partial p} = -\frac{\tilde{v}_{gc,r}}{\tilde{K}_{rr}} \tilde{f}$$

Can be solved using the method of characteristics

$$\tilde{f}(r, p) = f_{\text{LIS}}(p_{\text{LIS}}) e^{-\int_0^r dr' \tilde{v}_{gc,r}(r', p'_{\text{LIS}})/\tilde{K}_{rr}(r', p'_{\text{LIS}})}$$

We parametrize them as

$$\tilde{V} = V_0 (1 + \Delta V \theta(p - p_b))$$

$$\tilde{K}_{rr} = K_0 R^a \left(\frac{R^c + R^c_k}{1 + R^c_k} \right)^{(b-a)/c}$$

$$\tilde{v}_{gc,r} = \kappa_0 \frac{\beta p}{3 B_0} \frac{10 p^2}{1 + 10 p^2}$$
Example: Fit to AMS-02 Data

Electrons

Bartels Rotation 2433

Positrons

Can explain data accurately while the conventional force field model fails.

LIS from Vittino et al. arXiv:1904.05899
We find a correlation between the tilt angle and the diffusion coefficient.

\[\tilde{K}_{rr}^- = K_0^- R^a \left(\frac{R_c + R_k^c}{1 + R_k^c} \right)^{(b-a)/c} \]

\[\tilde{K}_{rr}^+ = K_0^+ R^a \left(\frac{R_c + R_k^c}{1 + R_k^c} \right)^{(b-a)/c} \]

Tilt angle from http://wso.stanford.edu/
We find a correlation between the tilt angle and the diffusion coefficient.

\[
\tilde{K}_{rr}^- = K_0^- R^a \left(\frac{R_c^c + R_k^c}{1 + R_k^c} \right)^{(b-a)/c} \\
K_0^- = a^- \langle \alpha \rangle \Delta t + b^- \\
\tilde{K}_{rr}^+ = K_0^+ R^a \left(\frac{R_c^c + R_k^c}{1 + R_k^c} \right)^{(b-a)/c} \\
K_0^+ = a^+ \langle \alpha \rangle \Delta t + b^+
\]

Tilt angle from http://wso.stanford.edu/
We find a correlation between the tilt angle and the diffusion coefficient.

\[\tilde{K}_{rr}^- = K_0^- R^a \left(\frac{R_c^c + R_k^c}{1 + R_k^c} \right)^{(b-a)/c} \]

\[K_0^- = a^- \langle \alpha \rangle \Delta t + b^- \]

\[\tilde{K}_{rr}^+ = K_0^+ R^a \left(\frac{R_c^c + R_k^c}{1 + R_k^c} \right)^{(b-a)/c} \]

\[K_0^+ = a^+ \langle \alpha \rangle \Delta t + b^+ \]

Tilt angle from http://wso.stanford.edu/
We find a weaker correlation between the magnetic field strength and the normalization of the drift coefficient.

\[\tilde{v}_{gc,r} = \kappa_0^+ \frac{\beta p}{3B_0} \frac{10p^2}{1 + 10p^2} \]

Magnetic field strength from http://www.srl.caltech.edu/ACE/
We find a weaker correlation between the magnetic field strength and the normalization of the drift coefficient.

\[
\hat{v}_{gc,r} = \kappa_0^+ \frac{\beta p}{3 B_0} \frac{10 p^2}{1 + 10 p^2}
\]

\[
\kappa_0^+ = c_0^+ \langle B_0 \rangle \Delta t + d_0^+
\]

Magnetic field strength from http://www.srl.caltech.edu/ACE/
We find a weaker correlation between the magnetic field strength and the normalization of the drift coefficient.

\[\tilde{v}_{gc,r}^+ = \kappa_0^+ \frac{\beta p}{3B_0} \frac{10 p^2}{1 + 10 p^2} \]

\[\kappa_0^+ = c_0^+ \langle B_0 \rangle \Delta t + d_0^+ \]

\[\kappa_0^+ = c_1^+ \langle B_0 \rangle \Delta t + d_1^+ \]

Magnetic field strength from http://www.srl.caltech.edu/ACE/
Comparing to Data - Prediction of Fluxes

Prediction of Electron Flux

$\phi_e^-(\text{GeV}^{-1}\text{m}^{-2}\text{s}^{-1}\text{sr}^{-1})$

- Linear model
- Two interval linear model
- AMS-02 data
- PAMELA data

E = 1.46-1.72 GeV
E = 2.65-3.00 GeV
E = 8.30-8.95 GeV

Prediction of Positron Ratio

\(\phi_{e^+}/\phi_{e^-} \)

- Linear model
- Two interval linear model
- AMS-02 data
- PAMELA

Comparing to Data - Prediction of Fluxes

\(E = 1.46-1.72 \text{ GeV} \)

\(E = 2.65-3.00 \text{ GeV} \)

\(E = 1.0-2.5 \text{ GeV} \)
We have developed a semi analytical method to solve the 2D transport equation.

Our method runs significantly faster than fully numerical model (~ 20 ms).

We are able to reproduce AMS-02 electron and positron fluxes.
Thank you for your attention!

Download our code at
https://git.rwth-aachen.de/kuhlenmarco/effmod-code