

Solar Modulation of Cosmic Rays in a Semi-Analytical Framework

Marco Kuhlen, Philipp Mertsch

Institute for Theoretical Particle Physics and Cosmology (TTK)

RNTHAACHEN UNIVERSITY

Importance of Solar Modulation

Understand cosmic ray fluxes at low energies to interpret potential dark matter signals.

Cuoco et al. arXiv:1903.01472

Disentangle modulation of galactic cosmic rays from processes in the heliosphere.

Johannesson et al. arXiv:1602.02243

Introduction - Motivation

Solving the Transport Equation

computational expense

Force-field

🗸 fast

× inaccurate

🗡 local

Gleeson & Axford 1968

Numerical codes

X slow

- ✓ accurate
- 🗸 global

Aslam et al., arXiv:1811.10710, Boschini et al., arXiv:1704.03733, Vittino et al., arXiv:1707.09003,

Kappl, arXiv:1601.02832

Introduction - Motivation

Solving the Transport Equation

computational expense

Force-field	Semi-analytical	Numerical codes
 ✓ fast ✗ inaccurate ✗ local 	✓ fast✓ accurate✗ local	✗ slow✓ accurate✓ global
Gleeson & Axford 1968		Aslam et al., arXiv:1811.10710, Boschini et al., arXiv:1704.03733, Vittino et al., arXiv:1707.09003, Kappl, arXiv:1601.02832

Force Field Approximation

Gleeson & Axford, Caballero-Lopez & Moraal

Rewrite the transport equation as

$$rac{\partial f}{\partial t} +
abla \cdot (C\mathbf{V}f - \mathbf{K} \cdot
abla f) + rac{1}{3p^2} rac{\partial}{\partial p} (p^3 \mathbf{V} \cdot
abla f) = Q \,,$$

with Compton Getting factor $C \equiv -\frac{p}{3} \frac{1}{f} \frac{\partial f}{\partial p}$.

Assumptions:

RWTHAACHEN UNIVERSITY

- Steady state, $\partial f / \partial t = 0$
- No sources, Q = 0
- No average momentum loss in lab frame, $\langle \dot{p} \rangle = \frac{1}{3} \mathbf{V} \cdot \nabla f / f = 0$

Zero streaming condition:

$$C\mathbf{V}f - \mathbf{K} \cdot \nabla f = 0.$$

Force Field Solution

Gleeson & Axford, Caballero-Lopez & Moraal Assuming spherical symmetry:

$$\frac{\partial f}{\partial r} + \frac{Vp}{3\kappa} \frac{\partial f}{\partial p} = 0,$$

Method of characteristics:

RINTHAACHEN UNIVERSITY

$$\int_{p_{TOA}}^{p_{LIS}} \frac{\beta \kappa_{p'}}{p'} dp' = \int_{r_{TOA}}^{r_{LIS}} \frac{V}{3\kappa_{r'}} dr' \equiv \phi(r),$$

For $\kappa_p \propto p$ and $\beta \approx 1 \longrightarrow \phi = p_{LIS} - p_{TOA}$. Conservation of the phase-space density *f* leads to:

$$\frac{J_{TOA}}{p_{TOA}^2} = \frac{J_{LIS}}{p_{LIS}^2}.$$

RWITH AACHEN UNIVERSITY

Time-Dependent Experimental Data

Phys. Rev. Lett. 121, 051102

$$R_e = \frac{\Phi_{e^+}}{\Phi_{e^-}}$$

Explanation of current data requires charge sign dependent effects.

 \Rightarrow Importance of drifts.

To explain the AMS-02 data we make modifications to the force field model.

Transport Equation - Solving the Transport Equation

Changes to Force Field Model

Starting again from divergence free streaming

IINIVERSIT

$$\int_{S} (C\mathbf{V}f - \mathbf{K} \cdot \nabla f) \cdot d\mathbf{S} = 0$$

Solve the transport equation in 2D including gradient curvature drifts.

Where we introduce angular averages

$$\tilde{f} = \int_{0}^{\pi/2} \mathrm{d}\theta \sin\theta f$$
$$\tilde{V} = \left(\frac{\partial \tilde{f}}{\partial p}\right)^{-1} \int_{0}^{\pi/2} \mathrm{d}\theta \sin\theta V \partial_{p} f$$
$$\tilde{K}_{rr} = \left(\frac{\partial \tilde{f}}{\partial r}\right)^{-1} \int_{0}^{\pi/2} \mathrm{d}\theta \sin\theta K_{rr} \partial_{r} f$$
$$\tilde{v}_{gc,r} = \left(\tilde{f}\right)^{-1} \int_{0}^{\pi/2} \mathrm{d}\theta \sin\theta v_{gc,r} f$$

Changes to Force Field Model

After angular averages this reduces to

RWITHAACHEN UNIVERSITY

$$\frac{\partial \tilde{f}}{\partial r} + \frac{p \, \tilde{V}}{3 \tilde{K}_{rr}} \frac{\partial \tilde{f}}{\partial p} = - \frac{\tilde{v}_{gc,r}}{\tilde{K}_{rr}} \tilde{f}$$

Can be solved using the method of characteristics

$$\begin{split} \tilde{f}(r,p) = & f_{\text{LIS}}(p_{\text{LIS}}) \\ & \mathrm{e}^{-\int_{0}^{r} \mathrm{d}r' \frac{\tilde{v}_{gc,r}(r',p'_{\text{LIS}})}{K_{rr}(r',p'_{\text{LIS}})}} \end{split}$$

With $p_{\text{LIS}}(r, p)$ the solution to the initial value problem

$$\frac{\mathrm{d}p}{\mathrm{d}r} = \frac{p\,\tilde{V}}{3\tilde{K}_{rr}}\,,$$

with $p_{\text{LIS}}(R, p) = p$.

Changes to Force Field Model

After angular averages this reduces to

RWITHAACHEN UNIVERSITY

$$\frac{\partial \tilde{f}}{\partial r} + \frac{p\,\tilde{V}}{3\tilde{K}_{rr}}\frac{\partial \tilde{f}}{\partial p} = -\frac{\tilde{v}_{gc,r}}{\tilde{K}_{rr}}\tilde{f}$$

Can be solved using the method of characteristics

$$\begin{split} \tilde{f}(r,p) = & f_{\text{LIS}}(p_{\text{LIS}}) \\ & \mathrm{e}^{-\int_{0}^{r} \mathrm{d}r' \frac{\tilde{v}_{gc,r}(r',p'_{\text{LIS}})}{K_{rr}(r',p'_{\text{LIS}})}} \end{split}$$

We parametrize them as

$$\tilde{V} = V_0(1 + \Delta V \theta(p - p_b))$$

$$\tilde{K}_{rr} = K_0 R^a \left(\frac{R^c + R_k^c}{1 + R_k^c} \right)^{(b-a)/c}$$
$$\tilde{v}_{gc,r} = \kappa_0 \frac{\beta p}{3B_0} \frac{10 p^2}{1 + 10 p^2}$$

Bartels Rotation 2433

Example: Fit to AMS-02 Data

Can explain data accurately while the conventional force field model fails.

LIS from Vittino et al. arXiv:1904.05899

RINTHAACHEN UNIVERSITY

RWTHAACHEN UNIVERSITY

Correlation with Solar Wind Parameters

We find a correlation between the tilt angle and the diffusion coefficient.

Tilt angle from http://wso.stanford.edu/

Comparing to Data - Prediction of Fluxes

Correlation with Solar Wind Parameters

We find a correlation between the tilt angle and the diffusion coefficient.

Tilt angle from http://wso.stanford.edu/

RNTHAACHEN UNIVERSITY

Comparing to Data - Prediction of Fluxes

Correlation with Solar Wind Parameters

We find a correlation between the tilt angle and the diffusion coefficient.

RWITHAACHEN

Correlation with Solar Wind Parameters

We find a weaker correlation between the magnetic field strength and the normalization of the drift coefficient.

Magnetic field strength from http://www.srl.caltech.edu/ACE/

Correlation with Solar Wind Parameters

We find a weaker correlation between the magnetic field strength and the normalization of the drift coefficient.

Magnetic field strength from http://www.srl.caltech.edu/ACE/

Marco Kuhlen, Philipp Mertsch | 25. Juli 2019

Correlation with Solar Wind Parameters

We find a weaker correlation between the magnetic field strength and the normalization of the drift coefficient.

Magnetic field strength from http://www.srl.caltech.edu/ACE/

Marco Kuhlen, Philipp Mertsch | 25. Juli 2019

RVNT FAACH

RNTHAACHEN UNIVERSITY

Prediction of Electron Flux

RNTHAACHEN UNIVERSITY

Prediction of Positron Ratio

Conclusion - Conclusion

Conclusion

- We have developed a semi analytical method to solve the 2D transport equation.
- Our method runs significantly faster than fully numerical model ($\sim 20 \, {\rm ms}$).
- We are able to reproduce AMS-02 electron and positron fluxes.

Conclusion - Conclusion

Thank you for your attention!

Download our code at https://git.rwth-aachen.de/kuhlenmarco/effmod-code