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~27-day intensity
variations often appear in
GCRs and in ACRs,
associated with recurring
high-speed solar wind
streams. Although the
heliospheric current
sheet (HCS) is generally
crossed twice per
rotation, cosmic ray
peaks often occur at only
one of the crossings.



We looked for correlations between the neutron monitor rate and: solar wind speed, solar
wind density, solar wind dynamic pressure, magnetic field strength, and rms variation of
the magnetic field, and find the highest (inverse) correlation with the solar wind speed:
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Binning the ACR and GCR data in 50 km/s-wide solar wind speed bins, we find good
power-law relationships, with ACRs more sensitive to Vsw than GCRs. Slopes tend to be
shallower in the 2017-18 than in the 2007-08 solar minimum, but consistent within
uncertainties (biggest difference: ~1.7¢ for ACR 0)
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The amplitude of the GCR variations (their index with respect to Vsw) does not show
much dependence on species (for C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, Fe, Ni) or
rigidity within the CRIS energy interval.

The average index of
-0.076 +/- 0.004 corresponds to a peak-to-valley intensity variation of
5.4 +/- 0.3% for a factor of 2 change in the solar wind speed.

There is no significant difference in the GCR intensity variation with solar wind speed
between the 2 solar minima.
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von Rosenvinge & Paizis 17" ICRC 10, 69 (1981) and Paizis et al. JGR 104 28,241 (1999)
describe the amplitude variation using force-field modulation:
Aclc=-3CAo/BK(P),

where c is the counting rate, ¢ the modulation parameter, B the particle speed, K the
diffusion coefficient as a function of rigidity P (taken as P%%), and C the Compton-Getting
factor, which for power law spectra in E with index y is:

C=(2-ay)/3, where a=(E+2E,)/(E+E,), with E, the rest mass.
This formula gives the dashed curve below. Instead, just assuming an energy-
independent amplitude of 55% for ACR O and 5% for GCR O and mixing by their relative
abundances gives the solid curve, which is virtually identical.
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In 1996-1997, 2007-2008,
and 2017-2018, cosmic
ray intensity peaks
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The 2 HCS crossings per rotation are
often asymmetric, with one a rapid
crossing and the other skimming along
the sheet. Particles drift into the
heliosphere along the HCS during A<0
cycles, and out during A>0. Peaks had
occurred at the flatter, more gradual
crossings during A<0 but at the more
abrupt crossings during A>0. But by
early 2019 there’s not much asymmetry
in the ecliptic, so it’s unclear if this

e SEOIN WiHlCOX SoOlar Observatol -+ pattern still persists.
—Gﬂs 505+
- 0 30 a0 90 120 150 180 210 240 270 300 330 360 —

1 | | | | 1 1 | | | | | 1

= 1 1 1 | 1 1 1 1 | 1 |
8 40 (a) A<O | >0
g
E, 20
t
[}
o 0 =\ |5
-6 w
5 =20
2
S
= _40
8 L1 1 | L 1L 1 | I I | | L ]
I 2008.0 2008.5 2018.0




AR Which side of the HCS has the dominant coronal hole
o is probably the key factor in determining which HCS
crossing leads to an increase in particle intensities:
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Summary
27-day variations in ACRs and GCRs in both 2007-2008 and 2017-2019:

— were anti-correlated with solar wind speed (as a power law),
— with larger amplitudes for ACRs than GCRs, and

— little to no energy dependence in CRIS GCRs but large energy dependence for ACR
species.

Relative amplitudes of the ACRs and GCRs agree well with expectations from
simple force-field modulation

— ACR amplitudes seem to be less now than in 2007-2008, while GCR amplitudes are the
same.

Peaks are seen only at every second sector crossing:

— Has been at outward-to-inward polarity HCS crossings for the last 3 solar minima, until
~2019 when it became inward-to-outward polarity = polarity alone is not
fundamentally important

— The sector crossings are often asymmetric; “flat” crossings skimming the HCS had
been favored during A<0 (when drift is inward along HCS), with peaks at abrupt
crossings during A>0 (when drift is inward from high latitudes). But this pattern
is no longer clear in recent data

— Crossing the HCS to the side without the dominant coronal
hole leads to particle increases, while the other crossing
leads to decreases.
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