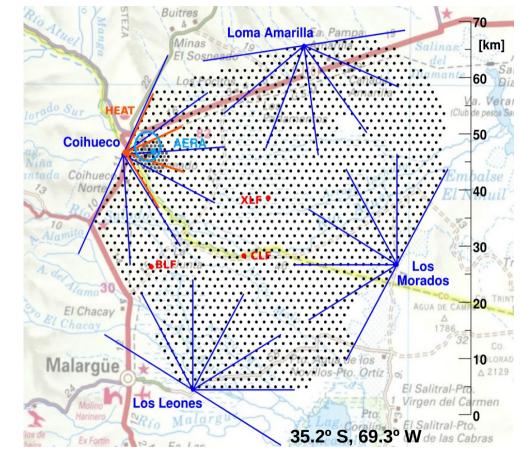

Large-scale anisotropies above 0.03 EeV measured by the Pierre Auger Observatory

Esteban Roulet¹ for the Pierre Auger Collaboration

¹Centro Atómico Bariloche, Argentina

THE PIERRE AUGER OBSERVATORY

WATER-CHERENKOV SURFACE DETECTORS (lateral shower profile, ~100% duty cycle)


SD1500: array with 1.5 km separation \rightarrow 3000 km² fully efficient for E > 2.5 EeV (θ < 60°), > 4 EeV (θ < 80°)

SD750: array with 750 m separation \rightarrow 23 km² fully efficient for E > 0.3 EeV (θ < 55°)

FLUORESCENCE DETECTORS

(longitudinal shower profile, ~13% duty cycle)

27 telescopes in 4 buildings

For the present analyses we use surface detector data: much larger statistics, simpler exposure

LARGE SCALE ANISOTROPIES CAN HELP TO UNDERSTAND THE ORIGIN OF UHECR

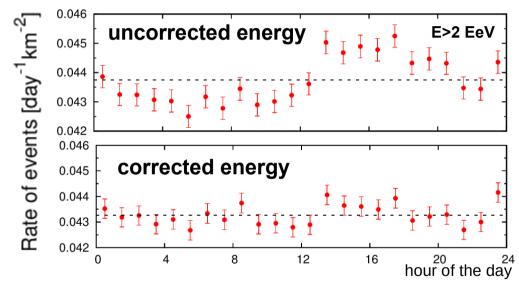
They could originate from:

- anisotropies in the distribution of extragalactic CR sources
- diffusive propagation from individual sources
- diffusive escape from the Galaxy

They can be present at all energies (while more localized anisotropies eventually at highest energies)

We here update and extend analyses including data up to 31 August 2018

anisotropies above full efficiency (E > 4 EeV): reconstruct full 3D dipole (and quadrupole)


(Science 357 (2017) 1266; ApJ 868 (2018) 4)

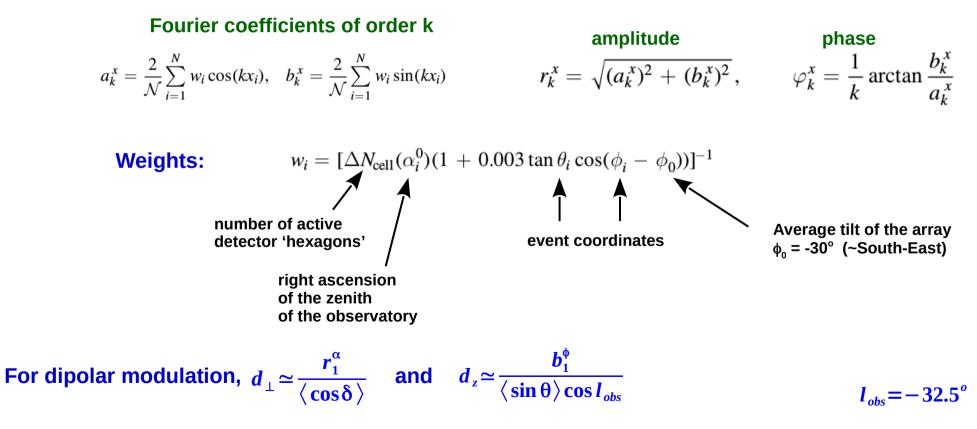
anisotropies in right ascension at energies E > 0.03 EeV: reconstruct equatorial dipole component

Some of the challenges to measure dipole anisotropies:

Some detectors may not always be working \rightarrow need to know how many detectors are operational at any time and account for that

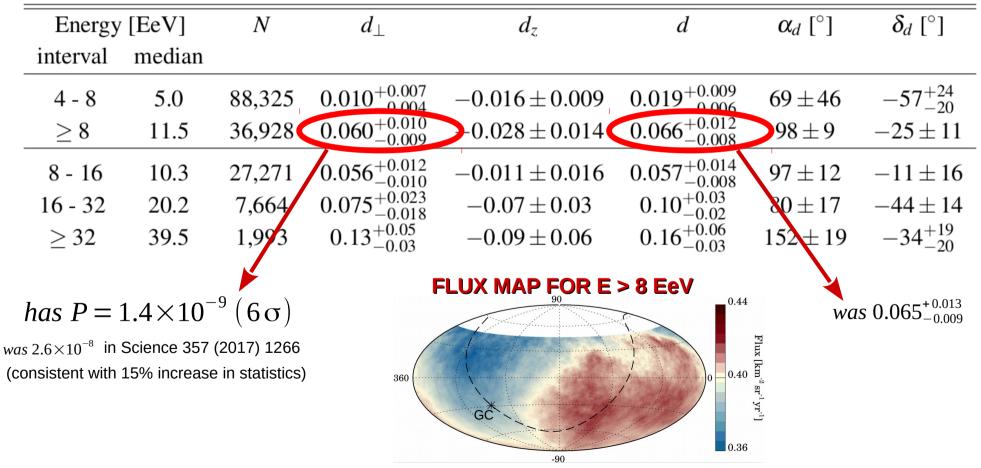
- The atmosphere changes: when it is hot the air is less dense
- \rightarrow increased lateral spread of air showers
- \rightarrow CR energy is overestimated
- \rightarrow larger rates above a threshold
- → need to account for this in energy assignment to avoid day/night or summer/winter modulations

Earth magnetic field: larger lateral spread of showers perpendicular to B \rightarrow affects energy reconstruction \rightarrow need to correct energy assignment

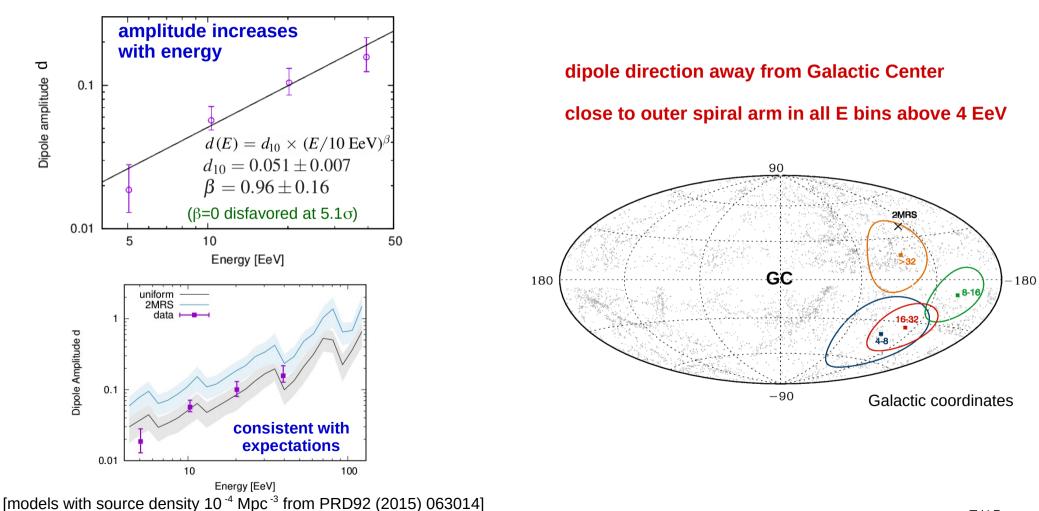

JINST 12 P02006 (2017)

JCAP 11 (2011) 022

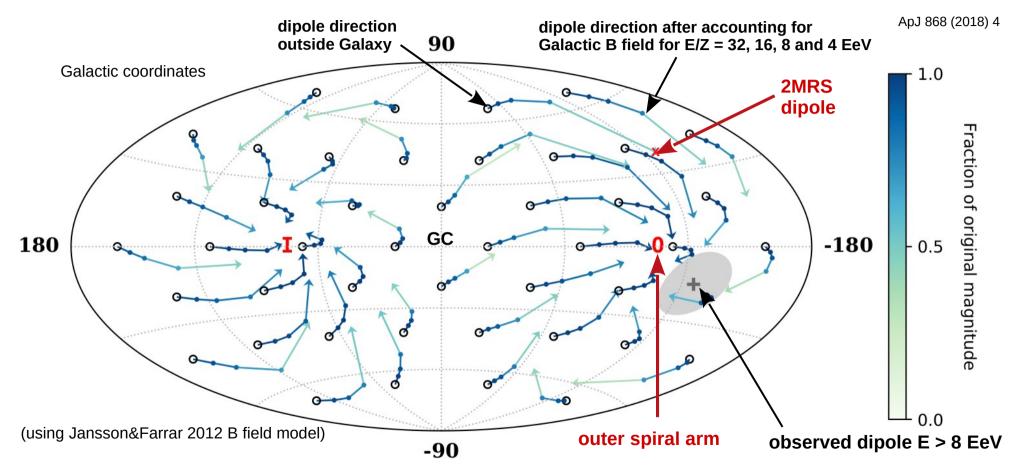
Slight slope of the terrain (~0.2°) \rightarrow more exposure towards South \rightarrow need correction


WEIGHTED FOURIER ANALYSIS

to obtain modulation in right ascension and azimuth: $x = \alpha$ or ϕ


above 4 EeV, SD1500 fully efficient up to 80° \rightarrow cover 85% of the sky (dec < 45°)

3D dipole: equatorial dipole (d_1) , NS component (d_2) , total amplitude (d) and direction



equatorial coordinates, smoothed on 45° radius windows

Energy dependence of dipolar modulation

Effect of Galactic B field on extragalactic dipole direction (and amplitude)

extragalactic dipole direction gets shifted towards spiral arms by Galactic B field

Allowing also for the presence of quadrupolar components

Dipole and quadrupole components in the two energy bins. The x axis is in the direction $\alpha = 0^{\circ}$									
	Energy [EeV]	d_i	Q_{ij}						
	4 - 8	$d_x = -0.001 \pm 0.008$	$Q_{zz} = -0.003 \pm 0.039$						
		$d_y = 0.008 \pm 0.008$	$Q_{xx} - Q_{yy} = -0.004 \pm 0.028$						
		$d_z = -0.014 \pm 0.022$	$Q_{xy} = 0.006 \pm 0.014$						
			$Q_{xz} = -0.008 \pm 0.018$						
			$Q_{yz} = -0.005 \pm 0.018$						
	≥ 8	$d_x = -0.004 \pm 0.012$	$Q_{zz} = 0.032 \pm 0.061$						
		$d_y = 0.054 \pm 0.012$	$Q_{xx} - Q_{yy} = 0.077 \pm 0.048$						
		$d_z = -0.011 \pm 0.035$	$Q_{xy} = 0.038 \pm 0.024$						
			$Q_{xz} = 0.015 \pm 0.029$						
			$Q_{yz} = -0.016 \pm 0.029$						

no significant quadrupolar components → dipolar amplitudes consistent with dipole only results

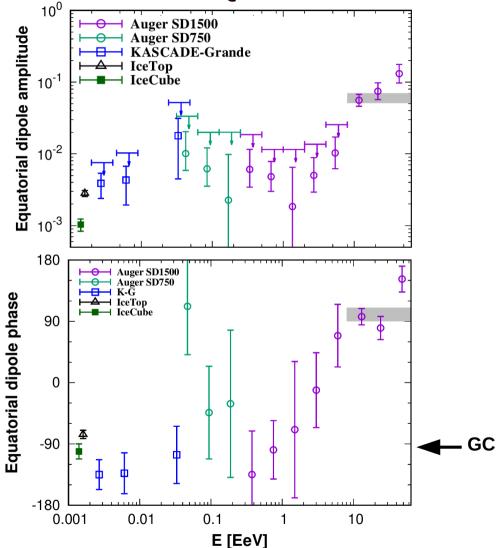
Modulation in right ascension from 0.03 EeV up to > 32 EeV

Use Fourier analysis in RA for E > 2 EeV

below 2 EeV, non-negligible amplitudes at anti-sidereal frequency suggest possible leftover systematics could be present at sidereal frequency

Use East-West method below 2 EeV (uncertainties larger but always safe)

systematic effects are the same in East & West sectors


→ difference between both rates gives clean measurement of derivative of modulation from which the actual modulation can be recovered

use SD1500 array and E-W for 0.25 EeV < E < 2 EeV (θ < 60°)

For E < 0.25 EeV, smaller SD750 array has actually better sensitivity

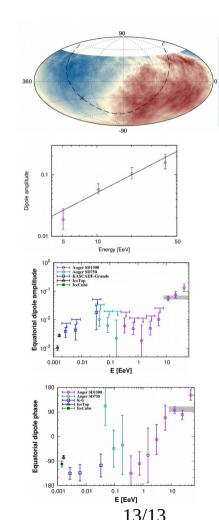
use SD750 array and E-W for 0.03 EeV < E < 0.25 EeV (θ < 55°)

EQUATORIAL DIPOLE RESULTS

amplitudes grow, from below 1% to above 10%

phases shift, from ~GC to ~ opposite direction

Suggests transition from anisotropies of Galactic origin below ~1 EeV to extragalactic origin above few EeV


Extragalactic component could be sizeable below 1 EeV, as long as it is sufficiently isotropic

EQUATORIAL DIPOLE RESULTS

							$-\mathbf{\mathbf{\hat{n}}}$
	E [EeV]	Ν	d_{\perp}	$lpha_d[^\circ]$	$P(\geq d_{\perp})$	d_{\perp}^{99}	d_{\perp}^{UL}
East-West	0.03125 - 0.0625	432,155	$0.010\substack{+0.010\\-0.004}$	$112\!\pm\!71$	0.54	0.028	0.033
(SD750)	0.0625 - 0.125	924,856	$0.006\substack{+0.006\\-0.003}$	-44 ± 68	0.50	0.016	0.020 豦
	0.125 - 0.25	488,752	$0.002\substack{+0.008\\-0.002}$	-31 ± 108	0.94	0.019	0.020
East-West	0.25 - 0.5	770,316	$0.006\substack{+0.005\\-0.003}$	-135 ± 64	0.45	0.015	0.018
(SD1500)	0.5 - 1.0	2,388,467	$0.005\substack{+0.003\\-0.002}$	-99 ± 43	0.20	0.008	0.011
	1 - 2	1,243,103	$0.0018\substack{+0.0047\\-0.0002}$	-69 ± 100	0.87	0.011	0.011 <mark>g</mark>
Fourier	2 - 4	283,074	$0.005\substack{+0.004\\-0.002}$	-11 ± 55	0.34	0.010	0.014 🕏
(SD1500)	4 - 8	88,325	$0.010\substack{+0.007\\-0.004}$	69 ± 46	0.23	0.018	0.026
	8 - 16	27,271	$0.056\substack{+0.012\\-0.010}$	97 ± 12	$2.3 imes10^{-6}$	0.033	\checkmark
	16 - 32	7,664	$0.075\substack{+0.023\\-0.018}$	80 ± 17	$1.5 imes 10^{-3}$	0.063	_
	\geq 32	1,993	$0.13^{+0.05}_{-0.03}$	152 ± 19	$5.3 imes10^{-3}$	0.12	_
	≥ 8	36,928	$0.060\substack{+0.010\\-0.009}$	98 ± 9	$1.4 imes 10^{-9}$	0.028	_
	-						

SUMMARY

- the bin above 8 EeV has the most significant departure from isotropy, with $d = 0.066^{+0.012}_{-0.008}$ and 125° away from GC, indicative of an extragalactic origin
- above 4 EeV the dipole amplitude grows with energy
- below 8 EeV the amplitudes are not significant 99% CL upper bounds on d_{\perp} are at the level of 1 to 3%
- results on the right ascension phases suggest that the anisotropy has a predominantly Galactic origin below 1 EeV and a predominantly extragalactic origin above few EeV

