
Characterizing the VHE emission of LS I +61 303 using VERITAS observations

D. Kieda¹ for the VERITAS Collaboration ¹University of Utah

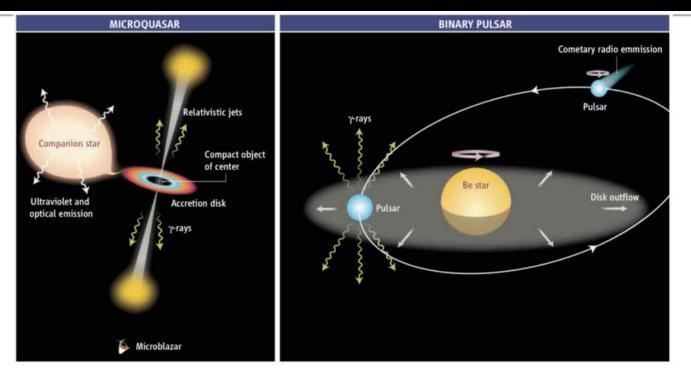
July 29, 2019

LSI +61 303 Binary System

High Mass X-ray Binary System

Compact object (2-3 $\rm M_{\odot})$ in an eccentric (e=0.54) orbit around massive (10-15 $\rm M_{\odot})$ Be star with strong wind/decretion disk.

24.496 day periodic modulation across entire electromagnetic spectrum


Superorbital modulation (1667 day) of radio, X-ray, GeV/TeV emission reported.

Strongest TeV emission near apastron ϕ =0.73 Strongest GeV emission near periastron ϕ =0.23

Sierpowska-Bartosik et al. 2009 Ap J. 693, 1462S

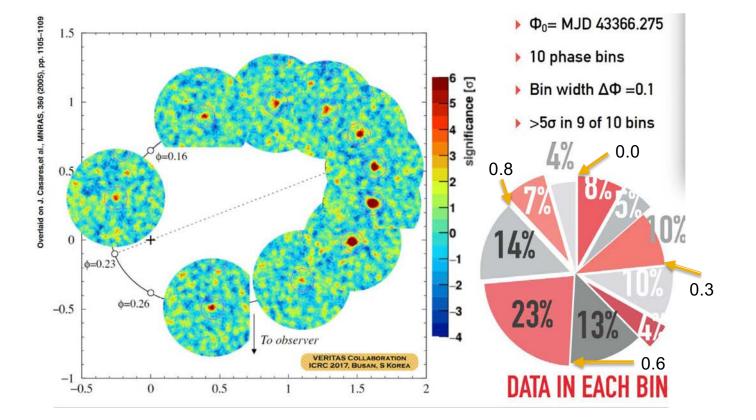
Possible Models of LSI +61 303

Both the microquasar and the Binary pulsar scenarios have aspects that are supported by ongoing observations. Both are still considered to be viable models.

VERITAS Observations 2007-2016

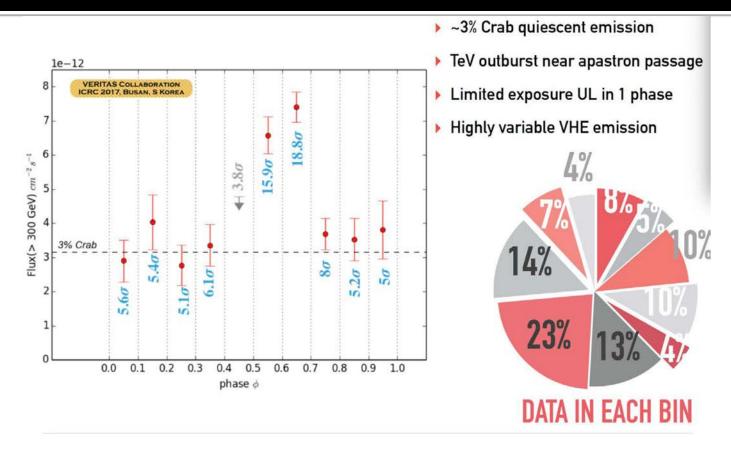
Observing	Instrument	Quality Selected	Detection
Season	Epoch	Livetime [mins]	Significance (σ)
2007 / 2008	V4	1518	6.2
2008 / 2009	V4	2305	3.8
2009 / 2010	V5	1207	0.7
2010 / 2011	V5	933	4.6
2011 / 2012	V5	1551	14.0
2012 / 2013	V6	490	6.5
2013 / 2014	V6	522	5.6
2014 / 2015	V6	1746	21.4
2015 / 2016	V6	1137	16.0
2016 / 2017	V6	703	12.4
All	V4, V5, V6	12112	29.2

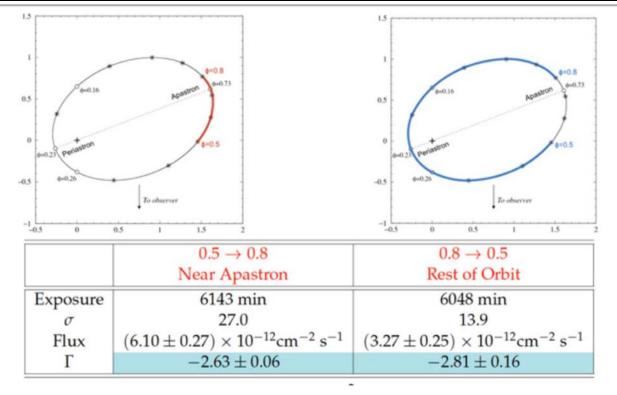
Extensive set of LSI observations from decade-long observing campaign.


LSI +61 303 Is a KSP for VERITAS.

Observability of apastron phase not possible every year due to observing constraints around full moon (29.53 day period).

P. Kar, PhD Thesis University of Utah 2018

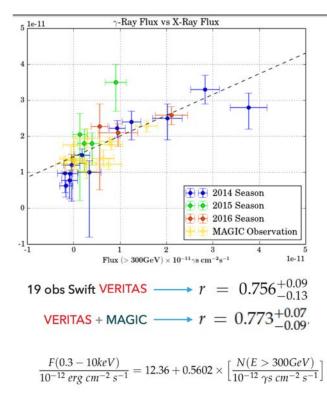

Orbital Phase Analysis 2007-2016


Orbital Phase Analysis 2007-2016

Spectral Variability 2007-2016

P. Kar, PhD Thesis University of Utah 2018

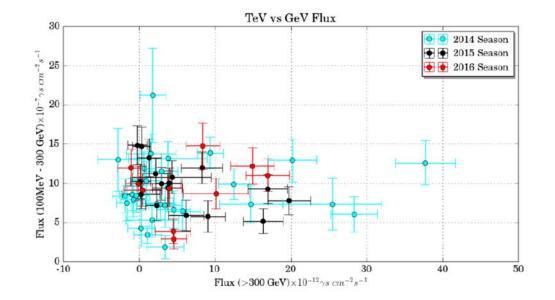
Spectral Variability 2007-2016


Phase bin (φ)	Significance (σ)	Flux $[\times 10^{-12} \text{ cm}^{-2} \text{ s}^{-1}]$	% of Crab	Spectral Index	Exposure [min]
$0.5 \rightarrow 0.8$	27.0	6.10 ± 0.27	5.8	-2.63 ± 0.06	6143
0.8 ightarrow 0.5	13.9	3.27 ± 0.25	3.1	-2.81 ± 0.16	6048
Just Before $0.8 \rightarrow 0.2$	10.9	3.57 ± 0.35	3.4	-2.86 ± 0.21	3120
$0.0 \rightarrow 0.2$ Just After $0.2 \rightarrow 0.5$	8.8	2.96 ± 0.37	2.8	-2.62 ± 0.22	2928

Strong evidence of flux variation near apastron

• Some hints of spectral hardening near apastron

TeV/X-ray Correlation

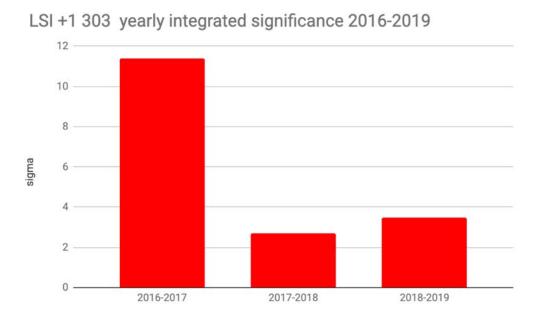

Significant correlation in individual LSI flares between VERITAS/Magic observed TeV flux and Swift observed X-ray flux

Note that the strongest correlations occur in 2014-2015 observing season

P. Kar, PhD Thesis University of Utah 2018

TeV/GeV non-correlation

Possible need for Two separate Emission processes In LSI?


TeV/X-Ray & GeV

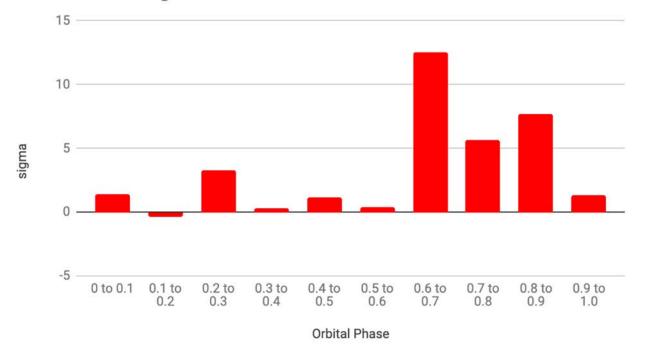
TeV (VERITAS) vs GeV(Fermi-LAT) Fluxes

Pearson Correlation coefficient r = -0.0255 +0.13-0.14 +/- 0.7131 for the datasets.

2016-2019 Observations

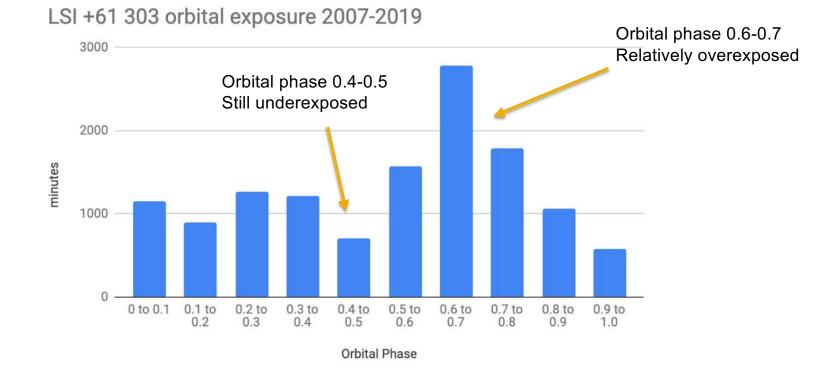
Strong Detection in 2016-2017

2017-2018 & 2018-2019

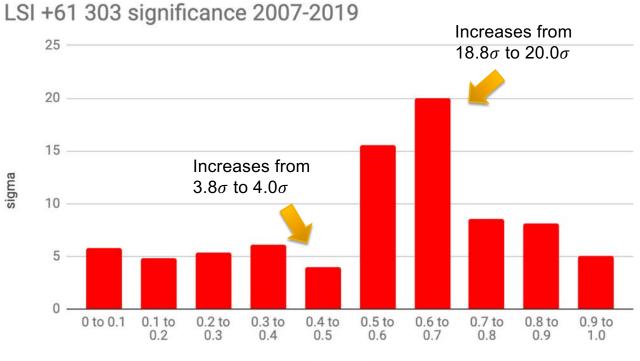

- Reduced exposure
- marginal significance

Observing Season	MJD Observation Date Range	Total Significance σ	Normalized. Significance σ/\sqrt{hours}
2016-2017	57662-57696	11.37	3.32
2017-2018	58028-58051	2.72	0.77
2018-2019	58402-58492	3.48	1.18

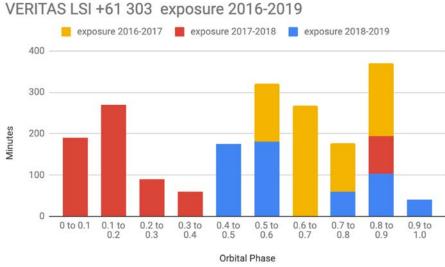
2016-2019 Observations

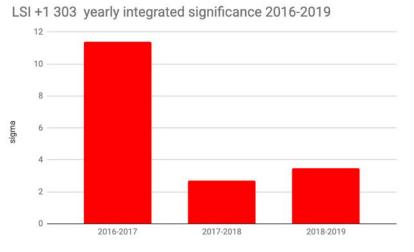

LSI +61 303 Significance 2016-2019

Characteristic TeV emission near Apastron continues


12 Years of integrated LSI +61 303 observations

12 Years of integrated LSI +61 303 observations



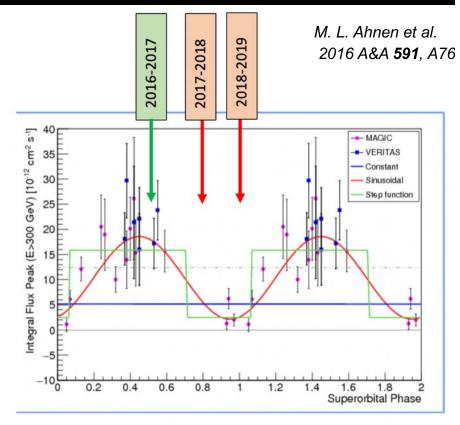


Orbital Phase

2016-2019 Observations

Dominant periastron exposure (2017-2018): expect low flux Dominant apastron exposure (2016-2017), (2018-2019) expect high flux

2018-2019: low flux state?

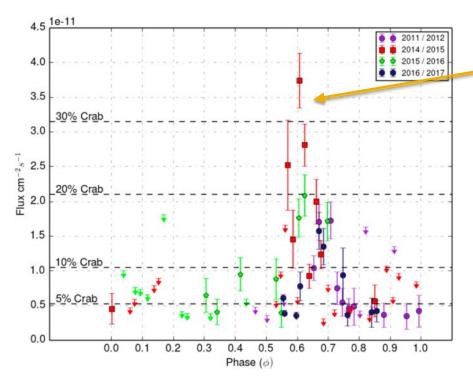

Superorbital Phases 2016-2019

Observing Season	MJD Observation Date Range	Total Significance σ	Normalized. Significance σ/\sqrt{hours}	Orbital Phase Range	Superorbital Phase
2016-2017	57662-57696	11.37	3.32	0.5-0.8	0.5
2017-2018	58028-58051	2.72	0.77	0.8-1.4	0.8
2018-2019	58402-58492	3.48	1.18	0.4-0.9	0.0

Orbital period 26.496 days Gamma-ray flux depends upon Orbital phase (apastron ~ 0.7).

<u>Superorbital period 1667 days</u> Gamma-ray Flux may also depend upon superorbital phase (peak ~0.5).

LSI +61 303 Superorbital phases (2007-2017)



Observing	Instrument	Quality Selected	Detection	Superorbital]	
Season	Epoch	Livetime [mins]	Significance (σ)	phase		
2007 / 2008	V4	1518	6.2	0.6		
2008 / 2009	V4	2305	3.8	0.8		
2009 / 2010	V5	1207	0.7	0.0		
2010 / 2011	V5	933	4.6	0.2		
2011 / 2012	V5	1551	14.0	0.5		
2012 / 2013	V6	490	6.5	0.7		
2013 / 2014	V6	522	5.6	0.95		
2014 / 2015	V6	1746	21.4	0.15		!!!
2015 / 2016	V6	1137	16.0	0.4		
2016 / 2017	V6	703	12.4	0.5		
All	V4, V5, V6	12112	29.2			

Generally Good agreement

2014-2015 flares completely break the superorbital paradigm

LSI +61 303 Flares

2014-2015 Flares

Brightest of four flares observed during 12 years

Occur with $\Delta \phi \sim -0.1$ before before apastron

2014-2015 flare provides the strong TeV/X-ray correlation

P. Kar, PhD Thesis University of Utah 2018

Summary

- 12-years of VERITAS Observations of LSI +61 303
- Continuing strong TeV emission near apastron
- Evidence for low level emission (3% crab) along entire orbit
- Modest evidence of spectral hardening near apastron
- Continuing hints of superorbital modulation across entire dataset...but dataset contains a glaring exception
- 2014-2015 flaring
 - Provides Strongest evidence for TeV/X-ray correlation
 - Occurs during superorbital minimum: three possibilities
 - 1. No simple superorbital hypothesis
 - 2. Huge flare to be large after superorbital suppression
 - 3. Flare mechanism independent from canonical apastron emission