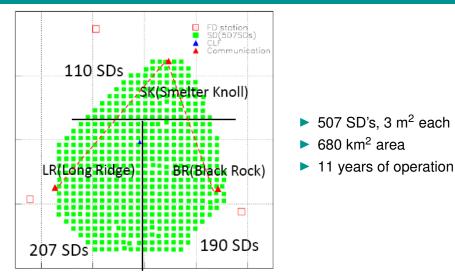
Search for ultra-high energy photons with the Telescope Array surface detector

Mikhail Kuznetsov, Oleg Kalashev and Grigory Rubtsov

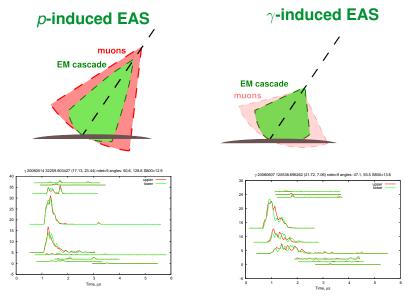
for the Telescope Array collaboration

E COPE A PROJECT

Supported by Russian Science Foundation


ICRC-2019 Madison, US July 29, 2019

- Telescope Array experiment
- Technique of photon search multivariate analysis
- Blind search for point sources of photons


based on Abbasi et al., arXiv:1904.00300

Target search for photons from dwarf galaxies

Telescope Array experiment: surface detector

Largest UHECR statistics in the Northern Hemisphere

Photon-induced showers:

- arrive younger
- contain less muons
- multiple SD observables affected: front curvature, Area-over-peak, $\chi^2/d.o.f.$, etc.

Data collected by TA surface detector for the 9 years: 2008-05-11 — 2017-05-10

> p and γ Monte-Carlo sets with CORSIKA and dethinning

Stokes et al, Astropart.Phys.35:759,2012

Cuts for both data and MC:

- 7 or more detectors triggered
- core distance to array boundary is larger than 1200m

- θ < 60°
- $E_{\gamma} > 10^{18} \text{ eV}$ (E_{γ} is estimated with photon Monte-Carlo)
- remove events coincident with lightnings (lightning events mimics γ-induced events)

52362 events after cuts

Photon search: list of relevant SD observables

- 1. Linsley front curvature parameter, a;
- 2. Area-over-peak (AoP) of the signal at 1200 m;

Pierre Auger Collaboration, Phys.Rev.Lett. 100 (2008) 211101

- 3. AoP LDF slope parameter;
- 4. Number of detectors hit;
- 5. N. of detectors excluded from the fit of the shower front;

6.
$$\chi^2/d.o.f.;$$

7. $S_b = \sum S_i \times r^b$ parameter for b = 3 and b = 4.5;

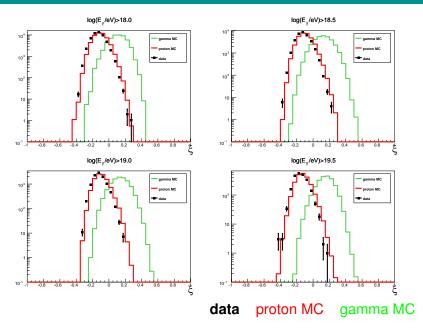
Ros, Supanitsky, Medina-Tanco et al. Astropart. Phys. 47 (2013) 10

- 8. The sum of signals of all detectors of the event;
- 9. Asymmetry of signal at upper and lower layers of detectors;
- 10. Total n. of peaks within all FADC traces;
- 11. N. of peaks for the detector with the largest signal;
- 12. N. of peaks present in the upper layer and not in lower;
- 13. N. of peaks present in the lower layer and not in upper;

Machine learning for multivariate analysis.

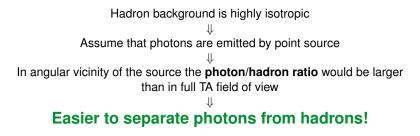
The Boosted Decision Trees (BDT) technique is used to build *p*-γ classifier based on multiple observables.

Telescope Array, Astropart. Phys. 110, 8 (2019); PRD 99, 022002 (2019)


root::TMVA is used as a stable implementation.

PoS ACAT 040 (2007), arXiv:physics/0703039

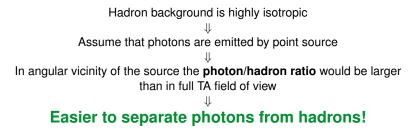
- BDT is trained with Monte-Carlo sets: γ (signal) and p (background)*
- BDT classifier is used to convert the set of observables of each event to a number ξ ∈ [−1 : 1]
- ξ is available for one-dimensional analysis.


* MC set is split into 3 equal parts: (I) for training the classifier, (II) for ξ -cut optimization, (III) for exposure estimate.

Distribution of MVA estimator ξ for data and MC

Search for point sources of photons: motivation

The way to improve the photon search sensitivity:


Bonus!

Specific photon source hypotheses could be tested by search in certain directions stacked

Dwarf spheroidal galaxies (heavy DM decay hypothesis)

Search for point sources of photons: motivation

The way to improve the photon search sensitivity:

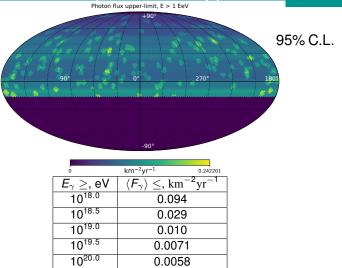
Bonus!

Specific photon source hypotheses could be tested by search in certain directions stacked

Dwarf spheroidal galaxies (heavy DM decay hypothesis)

Features of γ point sources search: blind search

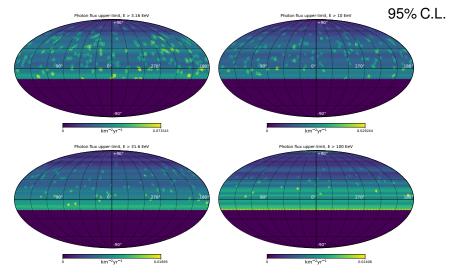
- Independent search for γ in each skymap direction
- The angular size of the each search region is equal to the γ angular resolution:


$E_{\gamma} \geq$, eV	10 ^{18.0}	10 ^{18.5}	10 ^{19.0}	10 ^{19.5}	10 ^{20.0}
ang.res.	3.00°	2.92°	2.64°	2.21°	2.06°

The skymap is pixelized into 12288 directions with HEALpix (7868 in TA field of view)

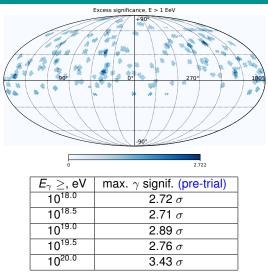
Optimisation of MVA-cut for γ flux upper-limit:

- Assume the flux consists of protons only (null hypothesis): *F*_{total} = *F*_p
- Optimize the ξ-cut separately for the best upper-limit in each direction using MC p and MC γ
- $E^{-2} \gamma$ -spectrum is assumed

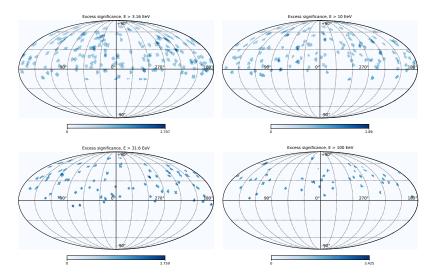

Results: point-source photon flux upper-limits

Pierre Auger: $\langle F_{\gamma} \rangle \le 0.035 \text{ km}^{-2} \text{yr}^{-1}$ (1° ang.res., 10^{17.3} $\le E \le 10^{18.5} \text{ eV}$)

A. Aab et al. ApJ 789, 160 (2014)


Results: point-source photon flux upper-limits

The results for all points are available in table form with paper Abbasi et al., arXiv:1904.00300


It can be used to constrain models of UHECR sources.

Results: photon excesses significance

The excesses are insignificant, given the large number of trials

Results: photon excess significance

Though not significant enough, the largest excess is 3.43 σ for $E_{\gamma} \ge 10^{20.0}$ eV located at { $\alpha = 155.3^{\circ}, \delta = 60.4^{\circ}$ }

Target search for photons from dwarf galaxies

Probe for the possible decay of heavy dark matter (HDM)

- HDM decay produce significant amount of photons in any model M. Kachelriess et al., PRD 98, 083016 (2018)
- DM is abundant in dwarf galaxies (Galactic Center is outside the TA field of view)
- Target source set: 21 dwarf galaxies satellites of Milky Way V. Bonnivard et al., MNRAS 453 (2015), 849
- Search for γ in stacked skymap pixels of dwarf galaxies (pixel size = γ ang.res.)

Results

No evidence for photon signal ($N_{\gamma}^{\text{cand.}} = 0$ at all energies)

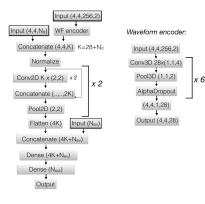
These results can be used to constrain HDM models

Target search for photons from dwarf galaxies

Probe for the possible decay of heavy dark matter (HDM)

- HDM decay produce significant amount of photons in any model M. Kachelriess et al., PRD 98, 083016 (2018)
- DM is abundant in dwarf galaxies (Galactic Center is outside the TA field of view)
- Target source set: 21 dwarf galaxies satellites of Milky Way V. Bonnivard et al., MNRAS 453 (2015), 849
- Search for γ in stacked skymap pixels of dwarf galaxies (pixel size = γ ang.res.)

Results


No evidence for photon signal ($N_{\gamma}^{\text{cand.}} = 0$ at all energies)

E_{γ} , eV	10 ^{18.0}	10 ^{18.5}	10 ^{19.0}	10 ^{19.5}	10 ^{20.0}
F_{UL}^{γ} , km ⁻² yr ⁻¹	0.15	0.057	0.014	0.0076	0.0052

These results can be used to constrain HDM models

Plans

Improve $\gamma\text{-search}$ sensitivity with recently developing Neural Net

see poster #172 on Tuesday

Increase γ -search exposure with recently

deploying TAx4 SD detector

Blind photon search

- The directional upper-limits for photons with $E > 10^{18}$ eV are set
- The directional upper-limits for E > 10^{18.5} eV are set for the first time
- No significant evidence for photon signal was found in blind search
- The results can be used to constrain UHECR sources models

Target photon search

- The photons from staked dwarf galaxies were searched no candidates were found
- The flux upper-limits for dwarf galaxies can be used to constrain heavy dark matter models

Blind photon search

- The directional upper-limits for photons with $E > 10^{18}$ eV are set
- The directional upper-limits for E > 10^{18.5} eV are set for the first time
- No significant evidence for photon signal was found in blind search
- The results can be used to constrain UHECR sources models

Target photon search

- The photons from staked dwarf galaxies were searched no candidates were found
- The flux upper-limits for dwarf galaxies can be used to constrain heavy dark matter models

Thank you!

Backup slides

The geometry reconstruction of events is crucial for point source search.

There is a bias in zenith angle θ reconstruction.

We correct all data and MC events for the mean value of this bias:

 $\langle \theta_{\rm rec.} - \theta_{\rm true} \rangle$

Angular reconstruction for photon primaries (used in this search)

E_{γ}, eV	$\langle \theta_{ m rec.} - \theta_{ m true} \rangle$	ang. resolution
10 ^{18.0}	-2.25°	3.00°
10 ^{18.5}	-2.24°	2.92°
10 ^{19.0}	-2.16°	2.64°
10 ^{19.5}	-2.06°	2.21°
10 ^{20.0}	-1.72°	2.06°

Features of γ point sources search: blind search

- Independent search for γ in each skymap direction
- The angular size of the search region is equal to the γ angular resolution
- The skymap is pixelized into 12288 directions with HEALpix (7868 in TA field of view)

Optimisation of MVA-cut for γ flux upper-limit:

- Assume the flux consists of protons only (null hypothesis): *F*_{total} = *F*_p
- Optimize the ξ -cut separately in each constant declination band $\delta_i \pm \text{ang.res.}$ using MC *p* and MC γ

• The optimization is for the minimum upper-limit: $F_{\gamma}^{UL} = \frac{\mu_{\text{Poisson}}^{\text{UL}}(N_{\rho}^{\xi})}{A_{\gamma}^{\text{eff}}}, \text{ where } N_{\rho}^{\xi} = \{\text{number of MC } \rho \text{ events passing the } \xi\text{-cut}\};$ $\mu_{\text{Poisson}}^{\text{UL}} = \{\text{upper-limit of the Poisson mean}\}; A_{\gamma}^{\text{eff}} = \{\text{Effective exposure of the experiment to } \gamma \text{ for the experiment to } \gamma \text{ for$

given values of event quality cuts and ξ -cut}