SuperK-Gd: the Gd future of Super-Kamiokande

Lluís Martí Magro, ICRR 36th ICRC July 31st, 2019. Madison, WI, USA

Super-Kamiokande Detector

41.				Water an purificati Control room	d air on system A Atotsu entrand	 50 kt ~2 m 8-inc 32 kt 20-in Trigg >999% 	 50 kton water ~2 m OD viewed by 8-inch PMTs 32 kt ID viewed by 20-inch PMTs Trigger efficiency: >99%@3.5 MeV E_I 		
		39.3m	<u> </u>	Mozumi	SK Ato	otsu			
		Phase	SK-I	SK-II	SK-III	SK-IV	SK-V		
		Start - end	1996 Apr - 2001 Jul	2002 Oct - 2005 Oct	2006 Jul - 2008 Sep	2008 Sep - 2018 Mar	2019 Jan 29-		
	Number of	ID (coverage)	11146 (40 %)	5182 (19 %)	11129 (40 %)	11129 (40 %)	11129 (40%)		
)	PMTs	OD		18	85	1	1885		

Super-Kamiokande Detector

	AC			Water an	d air	<u>Versat</u>	<u>ile detector:</u>	
				Control roon	n Atotsu entran	Solar n Atmos Proton	eutrinos pheric neutrino decay	
41.4	1.4m					Supernovae Supernova Relic Neutrinos Indirect search for DI and more		
				Ikeno-yama Kamioka-cho, 3k	Gifu 2700m cm 2ki	we)		
	<	39.3 m	\rightarrow	Mozumi	SK Ate	otsu		
		Phase	SK-I	SK-II	SK-III	SK-IV	SK-V	
		Start - end	1996 Apr - 2001 Jul	2002 Oct - 2005 Oct	2006 Jul - 2008 Sep	2008 Sep - 2018 Mar	2019 Jan 29-	
	Number of	ID (coverage)	11146 (40 %)	5182 (19 %)	11129 (40 %)	11129 (40 %)	11129 (40%)	
	PMTs OD 1885					1885		

Low energy event reconstruction

Solar neutrino: $\nu + e^- \rightarrow \nu + e^-$

Reconstruction:

- Interaction vertex:
 Timing information
- Electron direction:
 Cherenkov Ring pattern

- <u>Electron energy:</u>

Number of hit PMTs, N_{eff} (~6 hit/MeV @ SK-I, III and IV)

Resolution (10 MeV electron case):

- → Energy 14% Vertex: 87 cm Direction: 26° ← SK-I
- → Energy 14% Vertex: 55 cm Direction: 23° ← Software improvement

for SK-III & SK-IV

Neutron tagging in pure water

Neutron tagging in Gd loaded water

With tight time (delayed) and position coincidence between positron and neutron capture (90% neutron capture on Gd with 0.2% $Gd_2(SO_4)_3$ concentration) we will be able to tag neutrons with high efficiency

> Idea proposed as GADZOOKS! by Beacom & Vagins PRL.93, (2004) 171101

Supernova Relic Neutrinos

<u>Supernova relic neutrinos</u> (SRN) are those neutrinos from all the past core collapse supernovae in the history of the universe.

Phys.Rev. D85 (2012) 052007

From the predictions for the SRN spectrum there should be a discovery window between reactor and atmospheric neutrinos So far, irreducible backgrounds seriously limited the analysis

Other benefits from Gd

Core-collapse burst: gadolinium will allow us neutrino tagging, i.e. identify the dominant IBD events:

- Prompt recognition of a SN
- This would outline the v_x elastic scattering: $v_x + e^- \rightarrow v_x + e^-$ and

hence greatly improves the pointing accuracy to the SN

- Measure \overline{v}_{e} and v_{e} spectra

Pre-burst (nearby) signal: for $M > 8 M_{\odot}$ during Si burning

The road to SuperK-Gd: EGADS

200-ton detector with 240 photomultipliers

Water Transparency measuremen

Valuating Gadolinium's Action on Detector Systems

Dissolution and

pre-treatment

system

EGADS was build using the same materials as in SuperK Because of all the exciting possibilities, in June 2009 the SK collaboration launched the EGADS project

The road to SuperK-Gd: EGADS

200-ton detector with 240 photomultipliers

Water Transparency measuremen

Dissolution and pre-treatment system

Our Goals:
Water purification system
Monitor the water transparency
Effects on detector components
Adding/removing Gd
Neutron background

Evaluating Gadolinium's Action on Detector Systems

EGADS was build using the same materials as in SuperK Because of all the exciting possibilities, in June 2009 the SK collaboration launched the EGADS project

EGADS' main result

- <u>0.2 % Gd sulfate is</u> as <u>transparent</u> to Cherenkov light as pure-water
- Our water system achieves this with <u>no Gd losses</u>
- <u>Gd concentration is homogeneous</u> in our detector

11

Refurbishment work: - Clean walls and detector structures and remove potential sources of rust - Replace faulty ID and OD PMTs

- Replace the OD white Tyvek

<u>Upgrade:</u>

New hall excavated for the new Gd water system
Modify the in-tank piping

-Thank you all for the hard work !!

Super-Kamiokande refurbishment

Walls, structure & floor cleaned Damaged parts recovered Special care of not leaving any pieces/tools behind

Super-Kamiokande ID PMT refurbishment

~ 140 ID PMTs replaced or connections checked/redone.

Super-Kamiokande ID PMT refurbishment

Improved charge and timing resolutions (see backup)

Super-Kamiokande OD PMT refurbishment

~200 OD PMTs are replaced (~100 on the top)

Super-Kamiokande Tyvek refurbishment

B-W and W-W Tyvek replacement

Old piping scheme (until SK-IV)

60 tons/h cleaning power No control on OD flux No control on individual valves

Old piping scheme (until SK-IV) Current flow (SK-V)

60 tons/h cleaning power No control on OD flux No control on individual valves

OD/ID independent flux + top&bottom independent flux in the outer

Old piping scheme (until SK-IV) Approximate flow for SK-Gd

60 tons/h cleaning power No control on OD flux No control on individual valves

Increased cleaning power to 120 ton/h OD/ID independent flux + top&bottom independent flux in the outer

Super-Kamiokande refurbishment

Super-Kamiokande refurbishment

We do not observe any water leak within the accuracy of our measurement, which is less than 0.017 tons per day. This is less than 1/200th of the leak rate observed before the 2018/9 tank refurbishment.

First steps in SK-Gd: timeline

	10 October	11 November	12 Decembe	r 1 January 2020	2 February 3	3 March	4 April	5 May	6 June	7 July	8 August	9 September	10 October
		T2K Phy	sics run								Available	for T2K Pl	ysics run
Prepa 13tor	ration of is of Gd ₂ (S	O₄) ₃ ∙ 8H₂O											
ICP-N 13ton	/IS/Ge che s of Gd ₂ (Si	cking of 0 ₄) ₃ • 8H ₂ O								***			
	Prepar SK-Gd	ation of the water syst	e new										
				Pure water wit	recirculation th SK-Gd sy	on stem							
							Dissolving		3 month				
											2	- 3 month	
		Step1			Step2		Step3	Com	mission	ing	С	alibratio	ns

5

Preparation of Gd sulfate and water system until end of 2019 Running with new water system from end 2019 Gd sulfate dissolution by March 2020 Commissioning (3 months and calibrations ~2-3 months)

Summary

Neutron tagging can be used in basically all analyses at SK and adding 0.2% of Gd sulfate will give us this capability

EGADS has shown it is feasible: we can remove impurities and maintain high transparency water, with basically no Gd losses, etc.

Refurbishment work at SK done:

- Detector structure and walls were refurbished
- Faulty OD and ID PMTs replaced.
- Water leak currently undetectable
- Piping upgraded

Preparing for the first Gd loading until end of this year and dissolving in early 2020.

Exciting physics days ahead with neutron tagging at SuperK-Gd !!

Super-Kamiokande water transparency

Careful work and early water cleaning allowed for a fast water transparency recovery after refurbishment.

Hyper-Kamiokande ID photo-sensors

- Newly developed Hamamatsu HQE B&L PMT with high QE
- x2 better single photon efficiency as compared to the SuperK PMTs
- Improved charge and timing resolutions

50-cm HQE B&L R12860

New Water System for SuperK-Gd

New Water System for SuperK-Gd

Cavern for the new water system has been excavated

Equipment has been already installed (Gd solution, etc)

New Water System for SuperK-Gd

Super-Kamiokande leak status

There was no drop in the water level (no leak). The rise of ~0.1 mm observed at 8:27 on February 4 and 14:30 on February 7, respectively, is consistent with the prediction due to the volumetric expansion of water from heat inflow.

Currently we do not observe any water leakage from the SK tank within the accuracy of our measurement, which is less than 0.017 tons per day. This is less than 1/200th of the leak rate observed before the 2018/2019 tank refurbishment.

Backgrounds

Relevant radioactive contamination, typical impurities in untreated Gd sulfate and our requirements from our physics goals:

Chain	Part of the chain	Typical (mBq/Kg)	SRN (mBq/Kg)	Solar (mBq/Kg)
238т т	²³⁸ U	50	< 5	-
¹⁰⁰ U	²²⁶ Ra	5	-	< 0.5
2321	²³² Th	10	-	< 0.05
1n	²²⁸ Th	100	-	< 0.05
235т т	235 U	32	-	< 3
U	²²⁷ Ac/ ²²⁷ Th	300	_	< 3

Backgrounds

Relevant radioactive contamination, typical impurities in untreated Gd sulfate and our requirements from our physics goals:

Chain	Part of the chain	Typical (mBq/Kg)	SRN (mBq/Kg)	Solar (mBq/Kg)	Company A	Company B	Company C
238т т	²³⁸ U	50	< 5	-	< 0.04	< 0.04	< 0.04
200	²²⁶ Ra	5	-	< 0.5	< 0.2	< 0.2	~ 1
232 m 1	²³² Th	10	-	< 0.05	0.02	0.06	0.09
IN	²²⁸ Th	100	-	< 0.05	< 0.3	< 0.26	~ 2
235 t t	²³⁵ U	32	-	< 3	< 0.4	< 0.3	< 1.3
0	²²⁷ Ac/ ²²⁷ Th	300	_	< 3	< 1.5	< 1.2	< 3.1

We plan to use resins AJ4400 and AJ1020 to further remove U and Ra after dissolving Gd sulfate

Measurements done at Canfranc, Boulby and Kamioka Company names hidden

The road to SuperK-Gd: EGADS

Because of all the exciting possibilities, in June 2009 the SuperK collaboration launched the EGADS project

Evaluating Gadolinium's Action on Detector Systems

<u>Our Goals:</u>

- Water purification system
- Monitor the water transparency
- ✓ Effects on detector components
- Adding/removing Gd
- Neutron background

Mine-guard-C soak tests

Soaked Mine-guard-C in Gd loaded water with good results: Cherenkov ilght loss in 15 m is 77.64 % (well within the typical SK-III SK-IV values)

EGADS detector

Sampling positions at 1660 mm, 3320 mm and 4990 mm from top of the tank (for water transparency, UDEAL, and Gd concentration measurements)

Atmospheric ν backgrounds

• Charge Current:

• Neutral Current:

NC elastic

Background vs expected signal

SRN flux: Horiuchi, Beacom, Dwek PRD, 79, 083013 (2009)

The detection of SRN depends on the typical SN emission spectrum

 $T_v \sim 5 (M_{NS}/1.4 M_{\odot})^{1/3} (R_{NS}/10 km)^{-3/4}$

SRN number of expected events after 10 years of observation

HBD models	10-16MeV (evts/10yrs)	16-28MeV (evts/10yrs)	Total (10-28MeV)	significance (2 energy bin)
T _{eff} 8MeV	11.3	19.9	31.2	5.3 σ
T _{eff} 6MeV	11.3	13.5	24.8	4.3 σ
T_{eff} 4MeV	7.7	4.8	12.5	2.5 σ
T _{eff} SN1987a	5.1	6.8	11.9	2.1 σ
BG	10	24	34	

With SuperK-Gd the first SRN observation is within our reach!!

Step 4: EGADS Detector

- Step 1: Circulation through the 200 ton tank with pure water (first half 2011 pure water circulation)
 Done!

- **Step 2:** Circulation through the 15 ton tank with $Gd_2(SO_4)_3$ (from middle
- 2011 to end 2012) **Done!**
- **Step 3:** Circulation though the 200 ton tank with Gd₂(SO₄)₃ **Done!**
- Step 4: PMT mounting (240 in total). Done!
- **Step 5:** Full realization of the EGADS project **Done!**