

# **Cosmic-Ray Transport between the Knee and the Ankle with CRPropa**

36<sup>th</sup> ICRC in Madison, WI on July 31, 2019 Lukas Merten, Julia Tjus, Chad Bustard, and Ellen G. Zweibel

### Motivation

Direct observation of CRs at their sources is impossible

- $\rightarrow$ Indirect information based on:  $\frac{1}{2}$ 
  - Neutral messengers
     (ν, γ)
  - Transport modelling

All observables (spectrum, composition, arrival direction) are influenced during the transport

→Three-dimensional modeling including interactions

 $2^{nd}$ -knee knee ankle cut-off  $(3 \,\mathrm{PeV})$  $(0.3 \,\mathrm{EeV})$  $(5 \,\mathrm{EeV})$  (60  $\mathrm{EeV}$ )  $\Phi E^{2.7}$  [a. u. 10<sup>3</sup> - $\gamma = 2.7$  $\gamma = 3.0$  $\gamma = 3.3$ 10<sup>1</sup>  $\gamma = 2.5$  $\mathrm{d}N/\mathrm{d}E \propto E^{-\gamma}$ 10 100 Abund. [%] CNO\* 75 Fe\* He 11 H 50 25 0 Dipole-Ampl. 10 10<sup>-2</sup> 10<sup>-3</sup> -10<sup>-4</sup> 10<sup>10</sup> . 10<sup>5</sup> 10<sup>6</sup> 10<sup>9</sup>  $10^{8}$ 10<sup>11</sup> 10<sup>4</sup>  $10^{7}$  $E \left[ \text{GeV} \right]$ 

Impossible to simulate all particle individually on long time scales

→ Ensemble averaged description



## Modelling the Transport



Partial (Fokker-Planck) Differential Equation (FPG) for particle density n

Equivalence  
Stochastic Differential Equations (SDEs)  

$$d\vec{x} = \vec{u}dt + \hat{D}d\vec{w}$$

$$dp = -\frac{p}{3}(\nabla \cdot \vec{u})dt + D_{pp}dw_p$$



**Lukas Merten** 

### Comparison

### Grid

GalProp, DRAGON, PICARD, ...

#### Advantages

- Shorter computation times
   Widely used and well tested
   Good interaction implementation
- PICARD: Explicit stationary solver

#### Disadvantages

- Huge memory requirements
- Not possible to reweight
- No information on single particles
- Shocks hard to simulate

### SDE

CRPropa, Kopp+ (´12), Miyake+ (´14), ...

#### Advantages

Scales linearly with number of

processors

- Reweighting is possible
- Not restricted to grid
- Backtracking is possible

#### Disadvantages

- Averaging of results necessary
  - $\rightarrow$  Many pseudo particles
- Not all interactions implemented yet



### Numerical Solution in CRPropa

**CRPropa 3.0** (Alves Batista+, 2016): Open source Software for CRs with ( $E > 10^{17}$ eV) **CRPropa 3.1** (Merten+, 2017): Extension to lower energies ( $E > 10^{13}$  eV)

Numerical Integration: Euler-Maruyama-Scheme

$$\begin{split} \vec{x}_{n+1} - \vec{x}_n &= (u_x \vec{e}_x + u_y \vec{e}_y + u_z \vec{e}_z) \cdot h \\ &+ \left( \sqrt{2\kappa_{\parallel}} \eta_{\parallel} \vec{e}_{t} + \sqrt{2\kappa_{\perp}} \eta_{\perp,1} \vec{e}_{n} + \sqrt{2\kappa_{\perp}} \eta_{\perp,2} \vec{e}_{b} \right) \cdot \sqrt{h} \\ p_{n+1} - p_n &= -\frac{p_n}{3} \left( \nabla \cdot \vec{u} \right) \cdot h \end{split}$$

#### New modules

- DiffusionSDE
- AdiabaticCooling
- AdvectionField
  - Constant, Spherical, SphericalShock
- Source
  - UniformCylinder
  - SNR
  - Pulsar

Validation I: Mag. field  $\vec{B} = B_0 \vec{e}_z$ , wind  $\vec{u} = u_0 \vec{e}_x$  and aniso. diffusion  $\epsilon \coloneqq \frac{\kappa_{\perp}}{\kappa_{\parallel}} = 0.1$ Validation II: Spiral magnetic field, no wind and pure parallel diffusion  $\epsilon = 0$ 





#### Lukas Merten

## Cosmic rays from the GTS

- Assumption: The galactic termination shock (GTS) is able to accelerate CR, e.g., Bustard+ (2017).
- **Question**: Can they diffuse back into the Galaxy?

• **Diffusion:** 
$$D = 5 \times 10^{28} C_{\epsilon} \cdot \left(\frac{R}{4 \text{ GV}}\right)^{\delta} \cdot \text{diag}(1, \epsilon, \epsilon) \frac{\text{cm}^2}{\text{s}}$$

- Magnetic field:
   Spherical symmetric (model S) and an Archimedian spiral (model A)
- Wind Modell:

Continuous differentiable also at shock

- Schock:  $L_{CR} = 10^{40} \text{ erg}/_{s}, \Delta T = 100 \text{ Myr}, \frac{dn}{dE} \propto E^{-2}, r_{shock} = 250 \text{ kpc}$
- Simulationvolume: Free-Escape-Boundaries at  $r_{obs} = 10$  kpc,  $r_{b} = 350$  kpc





# CRs from the GTS (results)

- Ensemble loses energy in most cases (adiabatic cooling)
- Time scale and maximum luminosity depend on the diffusion index  $\delta$
- Energy spectrum is time dependent
- Perpendicular diffusion mitigates the anisotropy problem
- Upper limit of the neutrino flux is below the oberserved IceCube flux





The CR flux in the shin region can be partly explained by the GTS.



### Summary & Outlook

- CRPropa allows for anisotropic Diffusion in arbitrary magnetic background fields
- Consistent description of advection and corresponding adiabatic effects
- SDE method: Advantages at high energies compared with grid-based methods, e.g., intrinsic parallelization, backtracking, and reweighting.
- The GTS is an interesting source candidate for the CR flux in the shin region
- Magnetic field morphology has an important influence on observables
- 3D-modelling is necessary: Time evolution differs between 1D and 3D and anisotropy is only available in 3D
- Implementation of Momentum diffusion  $\rightarrow$  Acceleration of CRs
- $(\delta b/B) \rightarrow$  Space dependent eigenvalues of the diffusion tensor
- Analyses the additional propagation towards the Earth
- Analyses the *lost* CRs from starburst galaxies

