
AMEGO: All-sky Medium Energy Gammaray Observatory

Alexander Moiseev
CRESST/NASA/GSFC and University of Maryland, College Park

for the AMEGO team

Starting from the end: What is AMEGO?

Compton-Pair Gamma-ray Telescope: a Probe class mission

Tracker

Incoming photon undergoes pair production or Compton scattering. Measure energy and track of electrons and positrons

- 60 layer DSSD, spaced 1 cm
- Strip pitch 0.5mm

CdZnTe Imaging Calorimeter

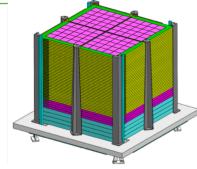
Measures location and energy of Compton scattered photons, and head of the shower for pair evens

Array of 0.6x0.6 x 2cm vertical CdZnTe bars

Csl Calorimeter

Extends upper energy range

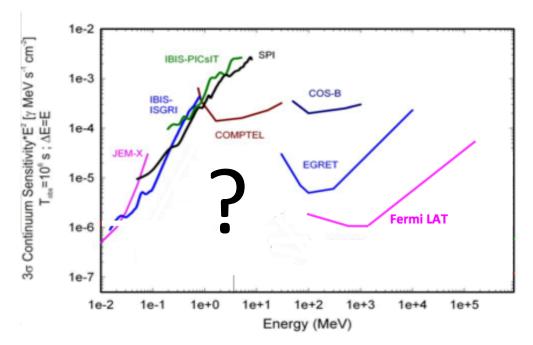
6 planes of 1.5cm x 1.5 cm CsI (TI) bars


Instrument concept:

- Maximized performance in 1 MeV 100 MeV range, with full range 0.2 MeV 10 GeV
- Simplicity, long-term (~10 years) reliability, max use of already space-qualified technology
- Sensitive to both y-ray interactions: pair production and Compton scattering
- Minimized amount of passive elements in detecting zone of the instrument
- Use fine segmentation of all detecting elements to provide the best particle tracking and event identification

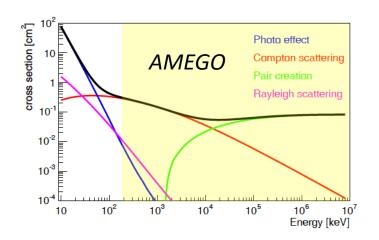
AMEGO Instrument Summary

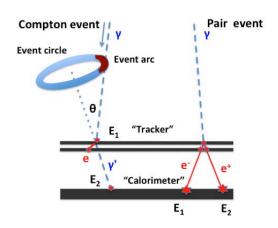
Energy Range	200 keV -> 10 GeV
Angular resolution	2.5° (3 MeV), 1.5° (5 MeV), 2° (100 MeV)
Energy resolution	<1% (< 2 MeV), 1-5% (1-100 MeV), ~10% (1 GeV)
Field of View	2.5 sr (20% of the sky)
Line sensitivity	<1x10 ⁻⁶ ph cm ⁻² s ⁻¹ for the 1.8 MeV ²⁶ Al line in a 5- year scanning observation
Polarization sensitivity	<20% MDP for a source 1% the Crab flux, observed for 10 ⁶ s
Continuum sensitivity (MeV cm ⁻² s ⁻¹)	2x10 ⁻⁶ (1 MeV), 1x10 ⁻⁶ (100 MeV), 5 years



NOW: Why this AMEGO?

Sensitivity for currently available measurements in MeV-GeV γ-rays

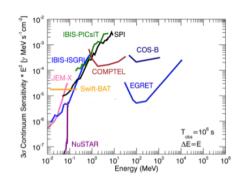

Motivation

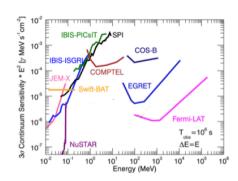


Guaranteed discovery space!

But why this gap?

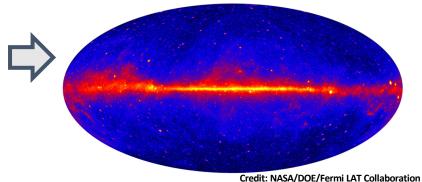
A lot of interesting science, but difficult to accurately measure: "Impossible energy range"


- From 1 to ~100 MeV two photon matter interaction processes compete: Compton scattering and pairproduction
- To fill the "MeV Gap" we need to consider both Compton Scattering and Pair Production
- At low energy pair-production components (e⁺ and e⁻) suffer large multiple scattering, causing large uncertainty in the incident photon direction reconstruction
- Materials undergo activation on orbit by cosmic rays: artificial background below ~10 MeV


Excellent results from Fermi, much exceeding the expectations: What Fermi LAT has done on high-energy γ-ray sky map for 8 years of operation

Motivation

(considering only discovery of new sources of γ-radiation)

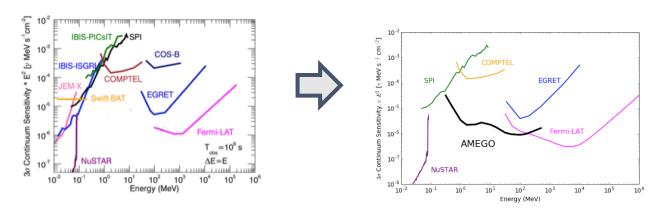


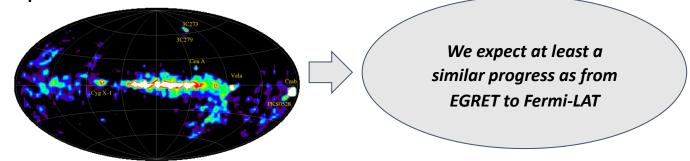
EGRET All-Sky Map Above 100 MeV

Credit: EGRET Team

~200 Sources Detected

Fermi-LAT All-Sky Map Above 1 GeV

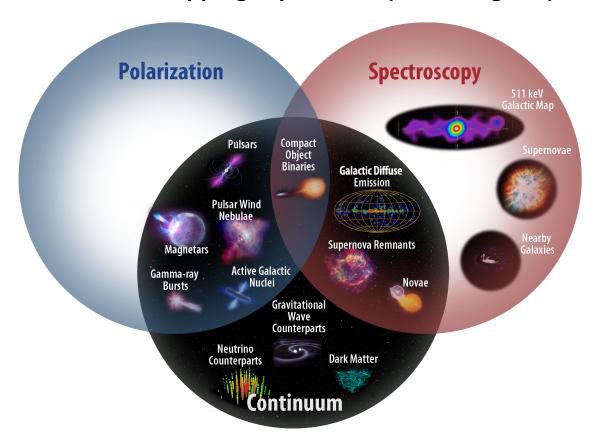

>5000 Sources Detected, 5 different catalogs


What we can expect from AMEGO:

Motivation

(considering only discovery of new sources of γ-radiation)

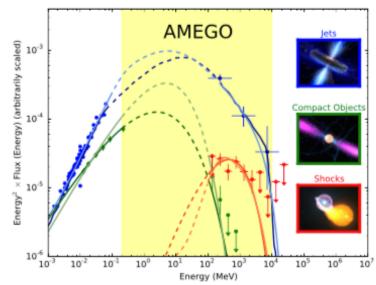
COMPTEL All-Sky Map 1 - 30 MeV



Credit: COMPTEL Collaboration

Tens of Sources Detected

AMEGO Overlapping capabilities (Venn diagram)

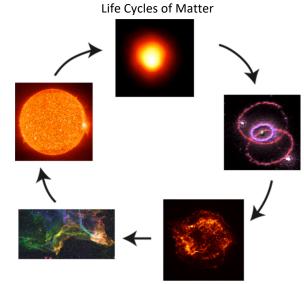


Extreme Astrophysics

Understanding how the Universe works requires observing astrophysical sources at the wavelength of *peak* power output

- Peak power is crucial for establishing source energetics
- Fermi, NuSTAR, and Swift BAT have uncovered source classes with peak energy output in the poorly explored MeV band

A critical energy band - Spectral features such as breaks, turnovers, cutoffs, and temporal behavior, which are critical to discriminate between competing physical models, occur within the MeV energy range.



Gamma-ray Spectroscopy

Nuclear lines explore Galactic chemical evolution and sites of explosive element synthesis (SNe)

- Electron-positron annihilation radiation
 - $e^+ + e^- -> 2\gamma$ (0.511 MeV)
- Nucleosynthesis
 - Giants, core callapse SNe (26Al, 44Ti)
 - Supernovae (56Ni, 57Ni, 44Ti)
 - ISM (26AI, 60Fe)
- Cosmic-ray induced lines
 - Sun
 - ISM

AMEGO with its <1% energy resolution and large effective area will be capable to provide critical data in gamma-ray lines

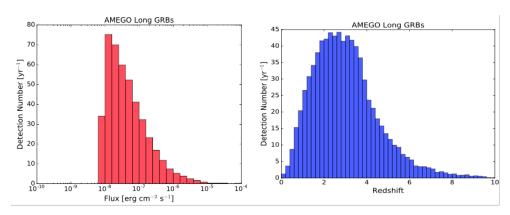
56Ni: 158 keV 812 keV (6 d) 56Co: 847 keV, 1238 keV (77 d)

57Co: 122 keV (270 d) 44Ti: 1.157 MeV (78 yr) 26Al: 1.809 MeV (0.7 Myr)

60Fe: 1.173, 1.332 MeV (2.6 Myr)

AMEGO and GRB

Excellent detector for GRB: high energy and angular resolution, large A_{eff} . What to expect?

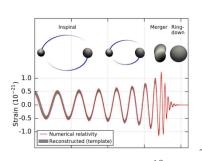

- 440 long GRB/year (determined using method of Lien et al 2014)
 - ~20 long GRB/year with z>6, all with sub-degree localization
- Polarization! 20% MDP for brightest 1% of AMEGO GRB

• AMEGO observations will probe the GRB emission mechanism and jet composition

localization

 ~80 short GRB/year (by scaling short/long ratio from GBM)

> Important implications for gravitational wave counterpart searches!


Finally we are moving to the most exciting opportunity for AMEGO:

Multimessenger Astrophysics – studying the Universe using high energy neutrinos and

gravitational waves in synergy with gamma-ray observations

- Neutrinos are produced in regions with extreme particle acceleration
- Gravitational waves are produced in regions with enormous energy release
- Gamma-ray observatories are the most natural path to connecting this "new astronomy" to known astrophysical objects

AMEGO: We no longer be simply looking for astrophysical counterparts of gravitational waves or neutrino sources, but will instead be focusing on understanding the nature of these enigmatic objects and using the unique multi-messenger data as a probe of fundamental physics.

- So far contributions from gamma-ray observations to multimessenger astrophysics:
 - gamma-ray lines seen from SN1987A, a nearby neutrino source (Matz et al., Nature, 1988)
 - ➤ a gamma-ray burst from the neutron star merger event GW170817A (Abbott et al, 2017)
 - ➤ a gamma-ray flare from the active galaxy TXS 0506+056, the first identified counterpart to a high-energy neutrino source (by IceCube Collaboration, 2018)

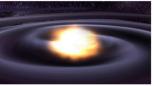
THE ASTROPHYSICAL JOURNAL LETTERS, 848:L13 (27pp), 2017 October 20 © 2017. The American Astronomical Society.

OPEN ACCESS

https://doi.org/10.3847/2041-8213/aa920c

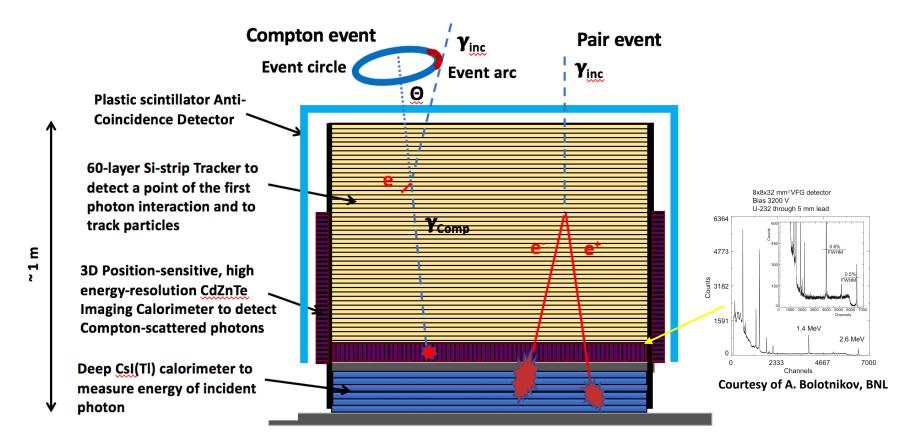
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

LIGO Scientific Collaboration and Virgo Collaboration, Fermi Gamma-ray Burst Monitor, and INTEGRAL (See the end matter for the full list of authors.)


Received 2017 October 6; revised 2017 October 9; accepted 2017 October 9; published 2017 October 16

Abstract

On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0 × 10⁻⁸. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74 ± 0.05) is between GRB 170817A and



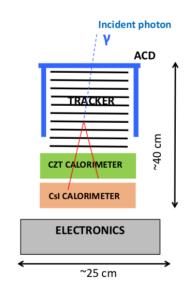
It is difficult to predict what exact capabilities of the instrument will be the most important for such studies in 10 years, but AMEGO will be able to conduct the best possible and deepest exploration of critical MeV range, providing the major contribution to understanding the nature of any such phenomena:

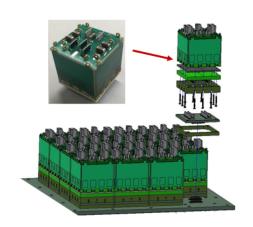
- A large field-of-view and all-sky scanning mode of observation (with a possibility to switch to the pointed mode, like Fermi)
- Continuum sensitivity from 200 keV to 10 GeV with a factor of >20 higher than COMPTEL on CGRO, and high line sensitivity
- High energy and angular resolution
- Polarization sensitivity

AMEGO Concept and Operation



Currently we are building a prototype, which will be tested at the HIGS polarized photon beam (early 2020) and later flown in balloon (mid-2021)


Here are already built subsystems to be integrated in the prototype later this year



Single layer of the tracker

CsI Calorimeter bars and module

CdZnTe Imaging calorimeter module

AMEGO Team – growing and open for joining

https://asd.gsfc.nasa.gov/amego/index.html

USA

NASA/GSFC (PI Julie McEnery) NASA/GSFC/CRESST (UMCP, UMBC) NASA/GSFC/Catholic University NASA/GSFC/NPP **Argonne National Laboratory** Brookhaven National Laboratory California Institute of Technology Clemson University Georgia Institute of Technology George Washington University Harvard-Smithsonian CfA Los Alamos National Laboratory NASA/MSFC **New York University**

NRI

Princeton University Purdue University

Rice University

SLAC

Stanford University Ohio State University

University of Alabama Huntsville University of California Berkeley

University of California Berkeley

University of California San Diego University of California Santa Cruz University of Delaware University of Illinois

University of MD Baltimore County University of MD College Park

University of Nevada Las Vegas

University of New Hampshire University of North Florida

University of Wisconsin

USRA

Washington University in St. Luois West Virginia University

Yale University

AUSTRIA

Universität Innsbruck

BELGIUM

Université de Liège

BRAZIL

Centro Brasileiro de Pesquisas **Físicas**

BULGARIA

Sofia University

ENGLAND

University College London

FRANCE

CNRS/IN2P3 Commissariat á l'Energie Atomique CSNSM/IN2P3 L'Observatoire Midi-Pyrénées

Laboratoire Univers et Particules de Montpellier

GERMANY

Die Johannes Gutenberg-Universität Mainz Friedrich-Alexander-Universität Erlangen-Nürnberg Max Planck Institute for

HONG KONG

University of Hong Kong

Extraterrestrial Physics

Universität Potsdam

JAPAN

Hiroshima University **Kyoto University** Nagova University

MEXICO

Universidad Autónoma de Chiapas

ITALY

ASI Space Science Data Center Astronomical Observatory of Padova **IAPS-INAF** INFN Sezione di Bari INFN Sezione di Perugia **ISAC** INAF Istituto di Radioastronomia & INAF University of Padova University of Padova & INFN Padova University of Pisa & INFN University of Trieste & INFN University of Udine

NETHERLANDS

Universiteit van Amsterdam

NORWAY

Universitetet i Bergen

POLAND

Copernicus Astronomical Center Jagiellonian University Uniwersytet Łódzki

PORTUGAL

Universidade de Aveiro Universidade de Coimbra

SOUTH AFRICA

North West University South Africa

Centro De Láseres Pulsados

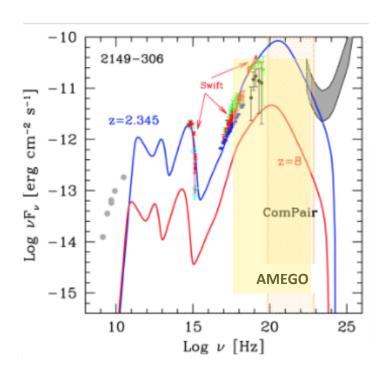
SPAIN

Instituto de Astrofisica de Andalucia IFAF Universidad Autonoma de Madrid **Universidad Complutense** de Madrid

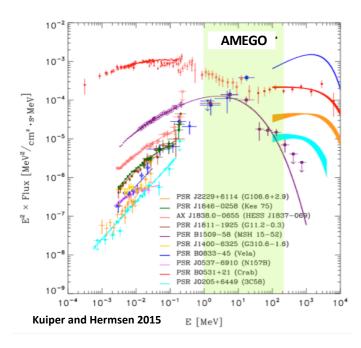
Universidad de Barselona

SWITZERLAND

Université de Genève


THANK YOU!

BACK-UPs


MeV Blazars

- Among the most powerful persistent sources in the Universe
- Large jet power, easily larger than accretion luminosity
- Host massive black holes, near 10⁹ solar masses or more
- Detected up to high redshift early Universe
- Evolution of MeV blazars is stronger than any other source class – i.e. maximum density might be very early on. Variability!
- AMEGO will detect >500 MeV blazars
 with ~100 at z>3

MeV γ-ray pulsars

Selected Pulsars (~200 gamma-ray pulsars are known). Some of shown pulsars are magnetars

- Pulsars seen in hard X-ray but not by Fermi-LAT, peak lies in MeV band
- 11 MeV pulsars known
 - Extremely energetic Edot > 10³⁶ erg
- Possible "hidden" population of energetic soft gamma emitting pulsars
- Emission might probe different part of the magnetosphere than GeV
- AMEGO will be able to reveal these pulsars

Mystery of Un-Identified Sources

About one third (or > 1,000) of Fermi-LAT sources remain unidentified WHO ARE THEY?

- Localization error
- Dark Matter clumps
- New source class
- Below 200 MeV, AMEGO with highly improved sensitivity, will discover many new sources and possibly source classes

>50% of Fermi-LAT catalog sources have a peak below the Fermi-LAT band