γ-ray/X-ray flux correlations in the BL Lac Mrk 421 using HAWC data

José Andrés García-González(1), Magda González(2), Nissim Fraija(2)

Instituto de Física, UNAM(1)
Instituto de Astronomía, UNAM(2)
Overview

● X-ray/\gamma-\textit{ray} correlation in blazars
● Leptonic Vs Hadronic models
● Mrk 421
 ○ HAWC LC
● X-ray/\gamma-\textit{ray} correlation for Mrk 421
 ○ data from 2014-11-26 to 2018-12-04
● Conclusions
HAWC operating since March 2015

Sky Survey

Instantaneous f.o.v. of 2sr

Extended sources (>1-2°)

Sources of the highest energies (>10 TeV)

Transient/variable sources

Long term monitoring
X-ray & gamma-ray correlation in blazars

● Electron Synchrotron emission is believed to be responsible of X-ray emission from blazars.
 ○ Low synchrotron peaked blazars
 ○ Intermediate synchrotron peaked blazars
 ○ High synchrotron peaked blazars

● For gamma-ray emission we have Inverse Compton (IC):
 ○ Energy is transferred to the photons $\gamma_e >> 1$
 ○ This scatters up the photon to higher energies.
 ○ The scattering can be made by e^-/e^+ and p

● Synchrotron self-compton (SSC)
 ○ The seeds photons of the IC scattering come from the synchrotron emission
 ○ These photos are up-scattered to higher energies by the same population of electrons which has produced them.
Leptonic Vs Hadronic models

- **Leptonic**
 - High energy component of SED
 - Synchrotron self-compton
 - One-zone, multi-zone SSC model
 - External compton
 - Seed photons comes from accretion disk (UV) and reflects in the BLR (Sikora et al. 1994)
 - If radiation originates from a largest distance, seed photons might come from dusty torus (DT), (Sikora et al. 2002)
Leptonic Vs Hadronic models

• Hadronic
 – High energy component of SED
 • Synchrotron proton blazar (SPB)
 – synchrotron radiation of relativistic protons and muons
 • Photo-meson production with subsequent synchrotron-pair cascading
Leptonic Vs Hadronic models

IC (SSC) model
High-energy peak

\(e^- \) Synchrotron radiation
Low-energy peak
(radio to optical/UV)

Synchrotron proton model
High-energy peak

Abdo et al. 2011
Jet power is larger for hadronic than for leptonic

Correlation possible
TeV gamma-rays and X-rays
Small magnetic field (< 100 mGauss)
No neutrino production

Correlation not straightforward
TeV gamma-ray and X-ray
Large magnetic field (50 Gauss)
Neutrino production
Mrk 421

- One of the closest (z = 0.03) and brightest blazars
- Emits at TeV energies
- Multiple dedicated observation campaigns
- Understanding correlation is very important
- Previous studies have shown evidence of positive correlation between X-ray and gamma-ray bands

- There is evidence that supports leptonic models
 - One-zone
 - Multi-zone

- Other scenarios still being studied
 - Hadronic
 - Lepto-Hadronic
Mrk 421 LC using HAWC data

- Flux measured in 1 transit/sidereal day
 - Data from Nov, 2014 to Dec 2018
 - Including days with coverage > 50% transit
 - Source transit of ~ 6 hr will be used to average X-ray data from SWIFT-XRT

- Other works related with Mrk 421 data from HAWC
 - NU6h (Mukharbek)
 - #PS2-52 (Coutiño)
X-ray/γ-ray correlation

- X-ray averaged within HAWC transit of ~ 6hr
 - Quasi-simultaneous data
- Very strong linear correlation
 - Consistent with leptonic scenario
 - Shows linear trend
- Hadronic component has not been excluded
 - γ-ray flux uncertainty is large, hard to extract possible higher order correlation
- Interpretation of results assumes one-zone SSC model

Conclusions

- We measured a strong X-ray/\(\gamma\)-ray correlation for Mrk 421
 - Consistent with leptonic model
 - Consistent with linear correlation
- Higher order correlation
 - Hadronic components?
 - HAWC data has large uncertainties but we can further investigate
- Further studies
 - Bayesian Blocks
 - Variability
 - High activity states
 - Harder when brighter?