Collective hadronization and air showers: can LHC data solve the muon puzzle ?

Tanguy Pierog

Karlsruhe Institute of Technology, Institut für Kernphysik, Karlsruhe, Germany

With S.Baur, H.Dembinski, R.Ulrich and K.Werner

36th ICRC, Madison, USA July the 28th 2019

Outline

- Muons in Extensive Air Showers (EAS)
- Muon puzzle
- Quark Gluon Plasma (QGP) and EAS
- Summary

The energy evolution of muon production require a different hadronization than the one observed in vacuum. Latest LHC results indicate that a collective hadronization, with property closer to what is needed for EAS, is more frequent than traditionally thought. Muon puzzle

UHECR Composition

With muons, current CR data are impossible to interpret
→ Very large uncertainties in model predictions

 \rightarrow Mass from muon data incompatible with mass from X_{max}

Based on Kampert & Unger, Astropart. Phys. 35 (2012) 660

H. Dembinski UHECR 2018 (WHISP working group)

Sensitivity to Hadronic Interactions

- Air shower development dominated by few parameters
 - mass and energy of primary CR
 - cross-sections (p-Air and $(\pi$ -K)-Air)
 - ➡ (in)elasticity
 - multiplicity
 - charge ratio and baryon production
- Change of primary = change of hadronic interaction parameters
 cross-section, elasticity, mult. ...

Precise prediction of air shower simulations require precise measurement of hadronic interactions properties :

Need for $p(\pi)$ -O measurements

See H. Dembinski (CRI6b, Sat)

Muon production by low energy interactions

T. Pierog, KIT - 5/13

CRC – July 2019

Global Picture of Muons from EAS

Different energy or mass scale cannot change the slope
Different property of hadronic interactions at least above 10¹⁶ eV

Ref: EPJ Web Conf. 210 (2019) 02004 - arXiv:1902.08124 - see Lorenzo Cazon (CRI15e, Wed) for details

ICRC – July 2019

Constraints from Correlated Change

 $\left< \ln N_{\mu} \right> - \ln N_{\mu}^{\text{ref}}$

- One needs to change energy dependence of muon production by ~+4%
- To reduce muon discrepancy **β** has to be change
 - \rightarrow X_{max} alone (composition) will not change the energy evolution
 - \rightarrow β changes the muon energy evolution but not X_{max}

•
$$\beta = \frac{\ln(N_{mult} - N_{\pi^0})}{\ln(N_{mult})} = 1 + \frac{\ln(1 - \alpha)}{\ln(N_{mult})}$$

 $\langle X_{\rm max} \rangle / \rm g \, cm^{-2}$

Possible Particle Physics Explanations

A 30% change in particle charge ratio ($\alpha = \frac{N_{\pi^0}}{N_{mult}}$) is huge !

- \clubsuit Possibility to increase N_{mult} limited by X_{max}
- New Physics ?
 - Chiral symmetry restoration (Farrar et al.) ?
 - Strange fireball (Anchordoqui et al.) ?
 - String Fusion (Alvarez-Muniz et al.) ?
 - ➡ Problem : no strong effect observed at LHC (~10¹⁷ eV)
- Unexpected production of Quark Gluon Plasma (QGP) in light systems observed at the LHC ? (at least modified hadronization)
 - **B** Reduced α is a sign of QGP formation (Baur et al., arXiv:1902.09265 and CRI6d) !
 - \rightarrow More strangeness and more baryons so less pions = smaller α
 - Not properly done in EPOS LHC (QGP only in extreme conditions)

Try a modified (test) version of EPOS

Modified EPOS with Extended Core

- Core in EPOS LHC appear too late
 - Recent publication show the evolution of chemical composition as a function of multiplicity
 - Large amount of (multi)strange baryons produced at lower multiplicity than predicted by EPOS LHC
- Create a new version EPOS QGP with more collective hadronization
 - Core created at lower energy density
 - More remnant hadronized with collective hadronization
 - Collective hadronization using grand canonical ensemble instead of microcanonical (closer to statistical decay)

Results for Air Showers

- Small change for <X_{max}> as expected
- Significant change of <X^µ_{max}>
- Comparison with <u>extreme case</u> (almost only grand canonical hadron.)
 - maximum effect using this approach
 - not compatible with accelerator data

Results for Air Showers

T. Pierog, KIT - 11/13

Comparison with Data

- Collective hadronization gives a result compatible with data Still different energy evolution between data and simulations Significance to be tested z =EPOS-LHC OGSJet-II.04 2.5 2.5 ---- AMIGA [Preliminary] → IceCube [Preliminary] 2.0 2.0---- NEVOD-DECOR ---- Pierre Auger $\Delta z = z - z_{mass}$ 1.5 1.5 Z - Zmass — Yakutsk [Preliminary] 1.0 1.0 $=2\nabla$ 0.5 0.5 Expected from X_{max} 0.0 0.0 EPOS QGP
 - ^{*a*} not energy-scale corrected

Probably tension at low energy (too many muons)

1019

 10^{18}

Ideally a larger slope would be needed ... what kind of hadronization possible ?

-0.5

 10^{15}

1016

 10^{17}

E/eV

 10^{18}

 10^{19}

QGP with large chemical potential for nuclear CR (Anchordoqui et al.) ?

-0.5

1016

1017

E/eV

Summary

Cosmic Ray data analysis rely on air shower simulations

- hadronic models main source of uncertainty
- forward physics lead air shower development

Compilation of all muon measurements clearly indicate a different slope for muon production as a function of shower energy

- Different hadronization required (less neutral pions / other particles)
- Collective hadronization in small system / forward in line with LHC results ?
- Probe new area in quark matter phase diagram ?
- Combination of forward and central calorimetric measurements to probe hadronization

Test forward extension of collective hadronization !

The energy evolution of muon production require a different hadronization than the one observed in vacuum. Latest LHC results indicate that a collective hadronization, with property closer to what is needed for EAS, is more frequent than traditionally thought.

Comment on "problem" with EPOS LHC in CORSIKA

Discrepency observed in CONEX/CORSIKA X_{max} simulation with **EPOS LHC in particular for Helium projectile :**

- CONEX uses the true cross-section from the model, while CORSIKA use a Glauber based calculation for the nuclear cross-section (for all models)
- Effect visible mostly in He for EPOS LHC (non Glauber like cross-section)
- Source of additional difference for TA simulations (line) unknown

Preliminary Version with Minimum Constraints

ICRC – July 2019

T. Pierog, KIT - 15/13

Test Effect of Collective Hadronization

- Reduced α is a sign of QGP formation (Baur et al. ArXiv:1902.09265) !

- Problem : α changed at most by 20% for $\mu_{\rm B}$ =0
- Behavior α at different $\mu_{\rm B}$?

Possible test using forward (and central) calorimeters at LHC

forward/backward asymmetry and centrality evolution