Searching for Dark Matter decay signals in the Galactic Halo with the MAGIC telescopes

Daniele Ninci on behalf of the MAGIC collaboration

ICRC 2019, Madison

Outline

MAGIC experiment

New method for the search of Dark Matter (DM) in the Galactic Halo (GH)

Systematic uncertainty evaluation

Dark Matter lifetime result

Conclusions

Dark Matter observations with MAGIC

Dwarf satellite galaxies

Galaxy clusters

Galactic Center

Galactic Halo observations with MAGIC

Galactic Halo observation with MAGIC

New method for GH, observations

DM search in the GH - Decay

J-factor ∝ DM content in the FoV considered

Rol for this work

Decay

Annihilation

DM search in the GH: how to select the FoVs

Task: minimize the systematic uncertainty in the OFF/ON relative acceptance.

- Observations performed during the same night;
- Following the same (Zd,Az) trajectory;
- Excellent weather condition;

DM search in the GH: how to select the FoVs

DM search in the GH: how to select the FoVs

Systematic uncertainty evaluation: 5 nights

- Best Cuts: $\{E > 60 \text{ GeV}, \theta < 1.2^\circ, \text{ hadronness} < 0.3\}$ R distributes with a variance The hadronness is the output of a test statistic for particle classification computed by a random forest

Systematic uncertainty evaluation

$$\sigma_{\rm syst} = (4.8 \pm 1.0)\%$$

Systematic uncertainty: energy dependence

Night	χ^2/ndf
2018-01-13	5.4/10
2018-01-21	3.1/10
2018-02-15	5.7/10
2018-02-17	7.6/10
2018-02-18	8.5/10

DM lifetime limits: 10 hours with the largest ΔJ

We perform an analysis based on the likelihood ratio test.

$$\mathcal{L}(1/\tau_{DM}; \mathbf{v}|\mathcal{D}) = \mathcal{L}(\mathbf{\kappa}_i|\mathbf{\kappa}_{obs}, \mathbf{\sigma}_{\mathbf{\kappa},i})$$

$$\times \prod_{j=0}^{N_{bins}} \underbrace{\frac{(g_{ij}(1/\tau_{DM}) + b_{ij})^{N_{ON,ij}}}{N_{ON,ij}!} \cdot e^{-(g_{ij} + b_{ij})}}_{N_{OFF,ij}!} \times \underbrace{\frac{(\mathbf{\kappa}_i b_{ij})^{N_{OFF,ij}}}{N_{OFF,ij}!}}_{\text{Poissonian } \mathcal{L} \text{ for the OFF}}$$

$$\mathbf{\sigma}_{\mathbf{\kappa},i} = \sqrt{(\mathbf{\sigma}_{\mathbf{\kappa},stat})^2 + (\mathbf{\kappa}\mathbf{\sigma}_{syst})^2}$$

DM lifetime limits: 10 hours with the largest ΔJ

Conclusion

the DM lifetime study

- We present a new method for searching for DM decay signal in the GH with Cherenkov telescopes:
 - Comparing ON and OFF FoVs from different sky regions selected by minimizing the systematic uncertainties in the OFF/ON acceptance and maximizing the expected DM intensity signal
- We estimated the OFF/ON systematic uncertainty in the acceptance ratio. The value results to be 4.8% and with no energy dependence.
- We computed the 95% CL for DM lifetime, resulting in constraints > 10^{26} s for m_{DM} =100 TeV. This is one of the most constraining limits using only 10 hours of data.
- The method can be extended to the archival data that respect the constraints presented here, thus increasing significantly the observation time available for

THANK YOU FOR YOUR ATTENTION!

Sensitivity vs Systematics

Available ON OFF position

