IceCube Neutrinos from the Local Universe with 2MRS Stephen Sclafani

For the IceCube Collaboration

IceCube Sources

- IceCube is a neutrino detector with 5160 PMTs located in the south pole glacial ice
- Identified astrophysical neutrinos, presented evidence for one neutrino source
- Still searching for the sources of most of the astrophysical neutrino flux

Neutrino Sources in the Universe

- Need hadronic beam hitting a target
- Focus is on locating the cosmic accelerator beams
- Typically we assume the beam and target are at the same location (same jet¹, same AGN², etc.)

- 1. See NU5f: Searching for Time-Dependent Neutrino Emission from Blazars
- 2. See NU5d: Search for High-energy Neutrinos from AGN Cores

- If we have many sources and CR escape without interacting, results in a diffuse flux of intergalactic CR.
- If significant portion of the neutrino production were due to secondary interactions from this isotropic diffuse UHECR flux, the beam is everywhere – how can we identify it?
- Look at the targets, sites of the secondary interactions.

Galaxy Density Hypothesis

- Assuming an isotropic beam, neutrino production would be primarily due to interactions in local matter
- Local Universe is anisotropic
- Look for neutrinos from local galaxy targets correlating arrival directions with column density
- Single galaxy contribution is small, but combined effect may be seen in IceCube.
- Correlation with close, large-scale features supergalactic plane, filament structure

ICRC 2019

2MASS Redshift Survey

- 2MRS¹ maps position, magnitude, and redshift for 45,000 galaxies, known for its completeness in low redshifts.
- Use redshift information as a template for local matter density and large scale structure.

2MRS

- Spatial Hypotheses:
 - Full Catalog each galaxy weighted by redshift distance
 - Full Catalog each galaxy equally weighted
 - Cutoff at redshift z=0.03, each galaxy equally weighted

Source Hypothesis 1

Full Catalog – each galaxy weighted by redshift distance

8

Source Hypothesis 2

• Full Catalog – each galaxy equally weighted ICRC 2019

Source Hypothesis 3

Full Catalog – cutoff at z=0.03

Analysis

- Spatial Templates convolved with detector acceptance assuming E⁻² signal neutrino energy spectrum.
- Analyze 7 years of well reconstructed muon-neutrino events.
- Test Statistic defined based on LLH Ratio evaluating the correlation between the neutrino direction and column density template.

Results

- Best fit $n_s = 0$ (Under Fluctuation)
- 33% of trials result in $n_s=0$ in each

Template	Flux Upper Limit (GeV ⁻¹ s ⁻¹ cm ⁻²) ¹	% of IceCube Astrophysical Flux ²
Weighted by Redshift	1.97x10 ⁻¹⁸	<20%
Full Catalog	2.89x10 ⁻¹⁸	<30%
Cutoff at z=0.03	2.15x10 ⁻¹⁸	<22%

 $1.dN/dE = \Phi_{90\%} \times (\frac{E}{100TeV})^{-2} \text{ GeV}^{-1} \text{cm}^{-2} \text{s}^{-1}$

1. $arV/aE = \Psi_{90\%} \times (\frac{100TeV}{100TeV})$ GeV cm s
12
2. arXiv: 1710:01191

Flux Upper Limits – E⁻²

- Three hypotheses yield similar flux limits
- Darker line indicates the central energy region for each spectrum
- Upper limits here assume astrophysical neutrino energy spectrum follows E⁻²

Flux Upper Limits – Redshift Weighting

• For one hypothesis, vary energy spectrum $E^{-\gamma}$ power law

Flux Upper Limits – Redshift Weighting

• Pick one reference energy (100TeV) to show range of spectra for each hypothesis

Flux Upper Limits – 100TeV

- Flux upper limits at 100TeV as a function of spectral index for each template
- All sky Diffuse Flux: 1.26x10⁻¹⁷ in these units

Conclusion

- Results were consistent with background
- Assuming E⁻² energy spectrum this analysis finds no evidence that most of our astrophysical neutrino flux is due to a diffuse beam with targets in the local universe. Encouraging for future source identification.
- Can use this model to set limits on neutrino production in local universe via diffuse intergalactic UHECR interactions
- Method can be revisited as we have a more complete picture of the local universe with new surveys

BACKUP SLIDES

LLH Function

$$LLH : \mathcal{L}(n_s) = \prod_{i=1}^{N} \left(\frac{n_s}{N} S_i(\mathbf{x}_i, \sigma_i, E_i) + (1 - \frac{n_s}{N}) B_i(\sin\delta, E_i) \right)$$

Data:

$$\tilde{D}_i(\sin \delta_i, E_i) = \frac{n_s}{N} \tilde{S}_i(\sin \delta_i, E_i) + (1 - \frac{n_s}{N}) B_i(\sin \delta_i, E_i)$$

Modified LLH:

$$\mathcal{L}(n_s) = \prod_{i=1}^{N} \left(\frac{n_s}{N} S_i(\mathbf{x}_i, \sigma_i, E_i) + \tilde{D}_i(\sin \delta_i, E_i) - \frac{n_s}{N} \tilde{S}_i(\sin \delta_i, E_i) \right)$$

$$TS = -2 \ln \left[\frac{\mathcal{L}(n_s = 0)}{\mathcal{L}(\hat{n}_s)} \right]$$

• Spatial PDF component from template maps, Energy PDF based on 2D Signal and Background histograms

Event and Background Rate

Event Angular Resolution

2MRS Sky

