Characterization of the Astrophysical Diffuse Neutrino Flux

Austin Schneider For The IceCube Collaboration

ICRC 2019

Event Morphologies

Track Muon Neutrino CC

Cascade

Factor of ~2 energy resolution 0.3° angular resolution at 100TeV 15% deposited energy resolution10° angular resolution above100 TeV

Double Cascade High Energy Tau Neutrino CC

Early

Electron Neutrino CC

Tau Neutrino CC

Neutrino NC

Angular and energy resolution comparable to cascades First candidate observed! See talk: J. Stachurska NU8f for details!

Late

Astrophysical Neutrinos - Two Methods

Events with Contained Vertex (the veto technique)

Veto region rejects atmospheric muons and neutrinos

High neutrino signal purity at high energy

More on the veto

- Muons accompany neutrinos from CR air showers
- High-energy muons reach the detector
- Veto suppresses atmospheric neutrino background
- Allows us to look at downgoing neutrino events!

Modelling the Data

Three Neutrino Flux Components

- 1. Astrophysical **v**
 - a. Mostly flat
 - b. Suppression at Earth's core
- 2. Atmospheric **v** from K/ π (Conventional **v** e **v** μ)
 - a. Neutrino production peaked at horizon
- Atmospheric v from charmed hadrons (Prompt ve vμ)
 - a. Mostly flat
 - b. Suppression at Earth's core

Modelling the Data

Three Neutrino Flux Components

- 1. Astrophysical **v**
 - a. Mostly flat
 - b. Suppression at Earth's core
- 2. Atmospheric **v** from K/ π (Conventional **v** e **v** μ)
 - a. Neutrino production peaked at horizon
 - b. Down-going suppressed by veto
- Atmospheric v from charmed hadrons (Prompt ve vµ)
 - a. Mostly flat
 - b. Suppression at Earth's core

Downgoing suppressed by veto

Data Selection With The Veto High-Energy Starting Event Selection

A Closer Look At The Data

Diffuse Astrophysical Neutrino Flux

Diffuse Astrophysical Neutrino Flux

Comparison with Other Samples

CEDURE

Name	Approx. Neutrino Energy	Direction	Dominant Flavor	Unbroken Spectral Index
HESE	50 TeV - 5 PeV	All-sky	е, µ, т	2.89
Cascades	5 TeV - 5 Pev	All-sky	е, т	2.48
NuMu	50 TeV - 10 PeV	Northern sky	μ	2.28

Tests of Models

- Many possibilities for high energy astrophysical neutrino production
- Test just a few: AGN, low-luminosity AGN BLLacs, choked jets in core-collapse SN, star burst galaxies, low-luminosity BLLacs, and GRBs $\mathcal{L}(\vec{\theta}, \vec{\eta}) = \begin{bmatrix} \prod_{i}^{n} \mathcal{L}_{Eff}(\mu_{i}(\vec{\theta}, \vec{\eta}), \sigma_{i}(\vec{\theta}, \vec{\eta}); d_{i}) \end{bmatrix} \prod_{s}^{m} \Pi_{s}(\eta_{s})$
- Compare to single power law as a baseline
- Test Model only (no free parameters)
- Test Model + SPL (only SPL parameters)
- Mostly SPL preferred
- Data in this sample is compatible with an unbroken single power law its sensitive energy range

	Ja	$\eta \mathcal{L}_{\mathfrak{o}}(\eta)$		
Model	Model only Bayes factor	Model + SPL Bayes factor	Most-likely SPL γ_{astro}	Most-likely SPL Φ_{astro}
Stecker [26]	4.32×10^{-13}	1.45×10^{-10}	$3.97\substack{+0.54 \\ -0.47}$	$4.08^{+1.8}_{-1.13}$
Fang et al. [27]	0.281	0.248	$3.83\substack{+0.81 \\ -0.5}$	$2.56^{+1.28}_{-1.44}$
Kimura et al. (B1) [28]	$4.84 imes10^{-6}$	$8.38 imes 10^{-7}$	$4.5\substack{+0.5 \\ -0.67}$	$0.98\substack{+1.04 \\ -0.98}$
Kimura et al. (B4) [28]	$3.44 imes 10^{-4}$	0.666	$2.43\substack{+0.31 \\ -0.26}$	$1.39\substack{+1.18 \\ -0.77}$
Kimura et al. (two component) [28]	$1.73 imes 10^{-4}$	6.12×10^{-6}	$4.15\substack{+0.84 \\ -0.73}$	$0.0^{+0.69}_{-0}$
Padovani et al. [29]	6.20×10^{-11}	$3.32 imes 10^{-7}$	$3.59\substack{+0.59 \\ -0.34}$	$4.97^{+1.68}_{-1.46}$
Senno et al. [30]	0.256	3.52	$3.67\substack{+0.57 \\ -0.62}$	$3.36^{+1.56}_{-1.34}$
Bartos et al. [31]	1.15×10^{-14}	2.81×10^{-16}	$4.25\substack{+0.75 \\ -0.83}$	$0.0^{+0.49}_{-0}$
Tavecchio et al. [32]	0.0730	1.04	$3.88\substack{+0.65\\-0.49}$	$3.7^{+1.39}_{-1.48}$
Biehl et al. [33]	8.66×10^{-7}	0.362	$3.35\substack{+0.4 \\ -0.38}$	$5.09\substack{+2.07 \\ -1.03}$

 $\mathcal{B}_{10} = \frac{\int d\vec{\eta}' \,\mathcal{L}_1(\vec{\eta}')}{\int d\vec{\eta}' \,\mathcal{L}_1(\vec{\eta}')}$

(1)

(2)

Summary

- Veto-based method produces a high-purity astrophysical neutrino sample at high energies
- Sample is sensitive to all neutrino flavors in the full sky
- Zenith distribution \Rightarrow background only hypothesis excluded
- Differing observations from different energy ranges and flavors may indicate additional features
- Tests of ad-hoc models show no strong preference beyond the single power law using this sample

Bonus Slides

Tests of Models

- Many possibilities for high energy astrophysical neutrino production
- Test just a few: AGN, low-luminosity AGN BLLacs, choked jets in core-collapse SN, star burst galaxies, low-luminosity BLLacs, and GRBs
- Compare to single power law as a baseline

Getting More Generic - E⁻² Segments

- We fit the normalization of many flux segments
- Errors show 68.3% credible regions
- Violins show the shape of the pdf
- Line shows approximately an E^-2.9 spectrum

• Unbroken power law works well for this data sample

Getting More Generic - E⁻² Segments

- We fit the normalization of many flux segments
- Errors show approximate 68.3% confidence regions
- Line shows approximately an E[^]-2.9 spectrum

• Unbroken power law works well for this data sample

The Future

Cascades

Others

Want to disentangle the flux properties and apparent discrepancies

HESE

2 ways to improve measurements:

- 1. Combine existing samples
- 2. Move to lower energies

More statistics \Rightarrow systematically dominated

Systematically dominated ⇒ challenging analysis

NuM<u>u</u>

Working to incorporate all known systematic uncertainties

- Atmospheric model
- Unconstrained hadronic interactions
- Cosmic ray flux/composition
- Neutrino cross section
- Earth model
- Charged lepton cross sections

