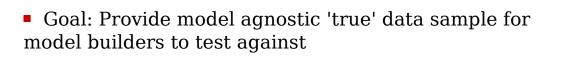
Atmospheric Neutrino Unfolding

0

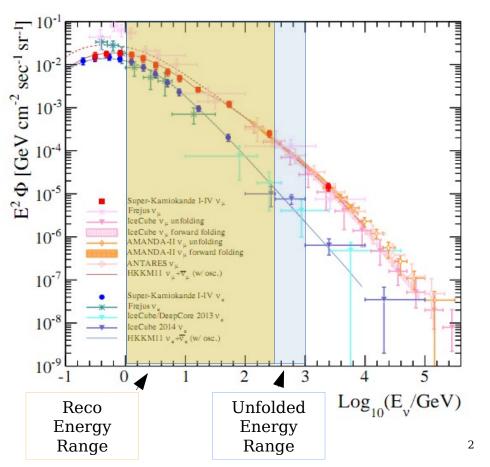
Joakim Sandroos, J. G.U. Mainz

for the IceCube collaboration

Motivation

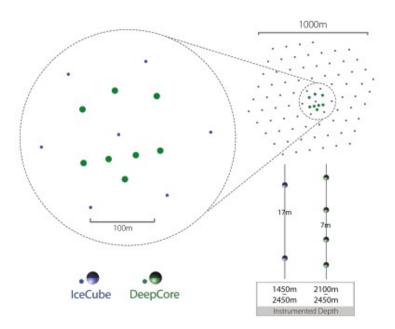


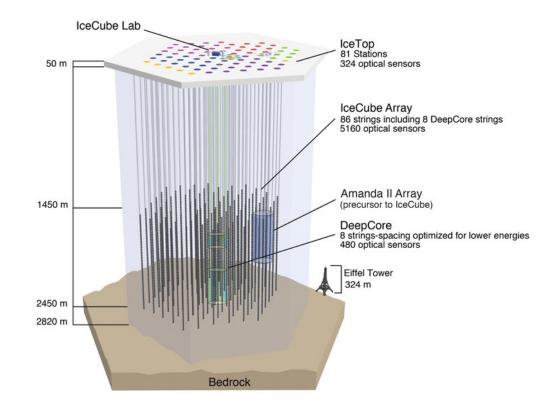
- Goal: Accurate 'beam' measurement for any experiment depending on atmospheric neutrinos
- Means: Model agnostic Unfolding
- Blind: Analysis tested on MC and 10% data sample.



IceCube / DeepCore

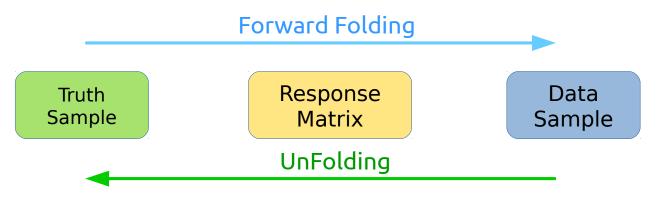
- Antarctica
- Ikm³ instrumented ice
- Cherenkov radiation
- 5160 optical modules
- Outer detector as muon veto



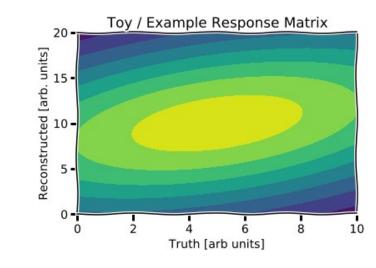


Unfolding Philosophy

- Both forward- and unfolding depend on the detector response matrix
- In this analysis we build the response matrix by comparing MC truth to reconstructed MC



- Unfolding provides not model parameters, but physical quantities
- Unfolding constrains data via parameters
- \rightarrow Unlike forward folding we cannot fit values of parameters
- Based on our systematic uncertainties, we constrain our unfolded bin content



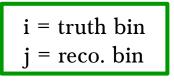
Bayesian Unfolding (D'Agostini)

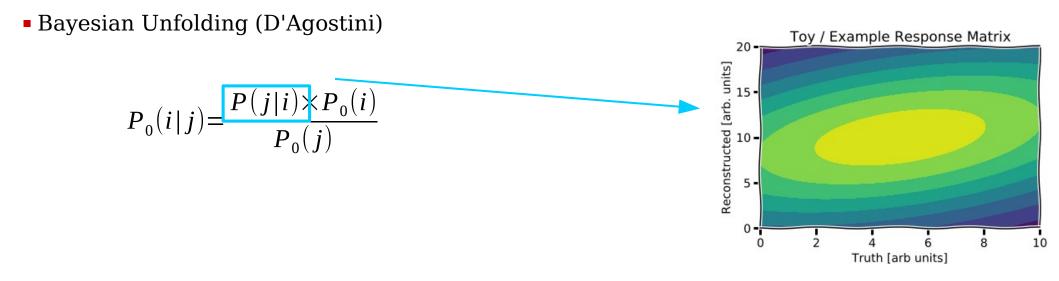
$$P_0(i|j) = \frac{P(j|i) \times P_0(i)}{P_0(j)}$$

• Prior information about our measurement: If we draw a sample from the MC truth distribution, what is the probability to be draw from bin i?

• Normalization: Probability to observe an event in bin j. Given by the logic of requiring an event in true bin i **and** for that event to contribute to bin j, and summing for all bins.

(This is why it's fair to call it a normalization constant)

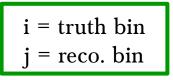




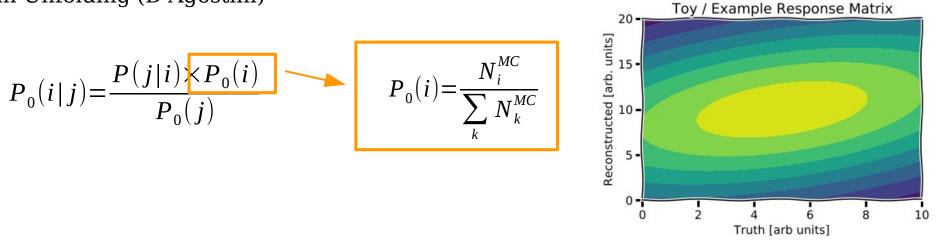
• Prior information about our measurement: If we draw a sample from the MC truth distribution, what is the probability to be draw from bin i?

• Normalization: Probability to observe an event in bin j. Given by the logic of requiring an event in true bin i **and** for that event to contribute to bin j, and summing for all bins.

(This is why it's fair to call it a normalization constant)



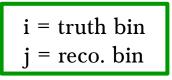
Bayesian Unfolding (D'Agostini)



• Prior information about our measurement: If we draw a sample from the MC truth distribution, what is the probability to be draw from bin i?

• Normalization: Probability to observe an event in bin j. Given by the logic of requiring an event in true bin i **and** for that event to contribute to bin j, and summing for all bins.

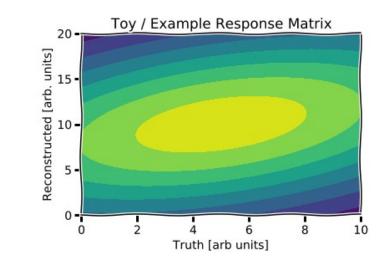
(This is why it's fair to call it a normalization constant)



Bayesian Unfolding (D'Agostini)

$$P_{0}(i|j) = \frac{P(j|i) \times P_{0}(i)}{P_{0}(j)}$$

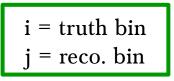
$$P_{0}(j) = \sum_{i} [P(j|i) \times P(i)]$$



• Prior information about our measurement: If we draw a sample from the MC truth distribution, what is the probability to be draw from bin i?

• Normalization: Probability to observe an event in bin j. Given by the logic of requiring an event in true bin i **and** for that event to contribute to bin j, and summing for all bins.

(This is why it's fair to call it a normalization constant)



Unfolding Method: Iterative Approach

Generates unfolding matrix via Bayes' theorem

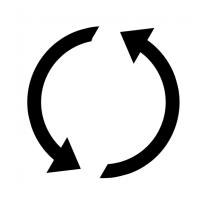
• Estimates unfolded spectrum U, from measurement M:

$$U_n = P_n(i|j) \times M$$

 $P_0(i|j) = \frac{P(j|i) \times P_0(i)}{P_0(j)}$

• Output of each step is prior for next step.

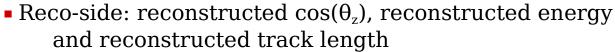
- Biased towards MC for low iterations \rightarrow Bias drops with iterations
- \blacksquare Statistical Uncertainty \rightarrow Grows with number of iterations
- Final number of iterations must be a trade-off between the above two



Response Matrix and Channels

JG

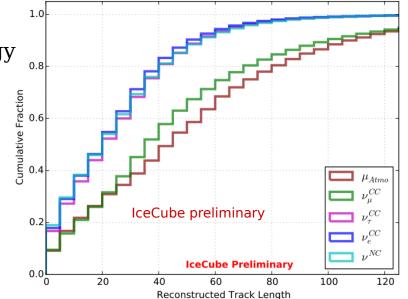
Response matrix constructed from MC



• Truth-side: MC PID, MC truth $cos(\theta_z)$ and MC truth energy

PID channels:
$$v_{\mu}^{cc} + \overline{v}_{\mu}^{cc}$$
 and v_{r}

• Weight truth side by: $(t_{live}V_{IC})^{-1}$



Unfolded quantity is "True In-ice interaction rate per volume [/m³/s]"

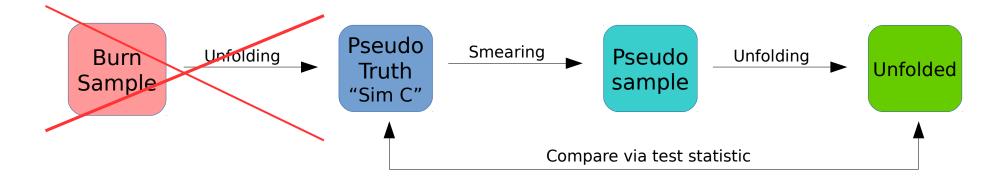
rest

• From these distributions the energy and zenith spectra are calculated

TSU: A Blind Burn Sample Closoure Test

• Problem: When unfolding a real data sample we do not have access to truth information like in the MC case

- Aim: Show stability of unfolding method across smearing and unfolding
- Closure test: Truth-Smeared-Unfolded (TSU) test



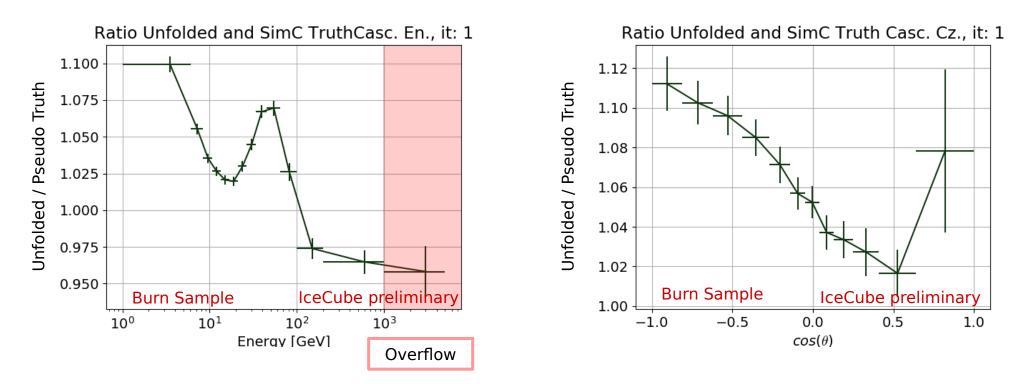
Unfold to 25 iterations

- Result: Converges on pseudo-truth to well within statistical uncertainty
- Careful consideration of stopping condition is necessary

JGU

TSU: Burn Sample Consistency

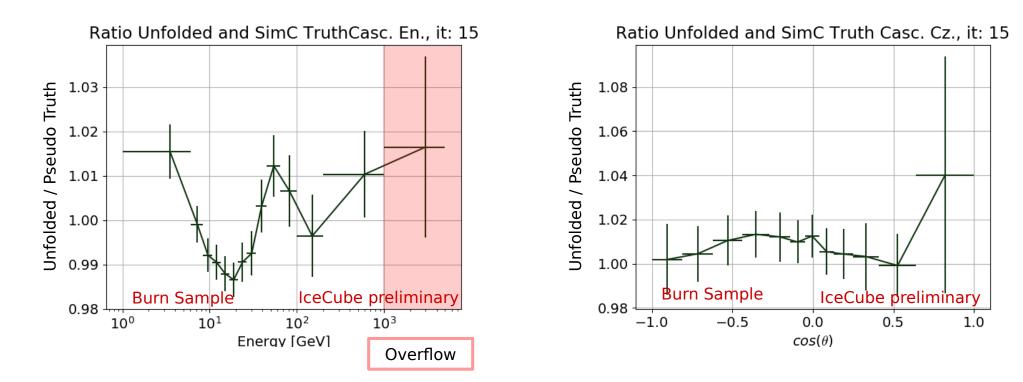
- Blind Check: TSU-Ratios, 1 iteration,
- Checks consistency in unfolding



TSU: Burn Sample Consistency

JG

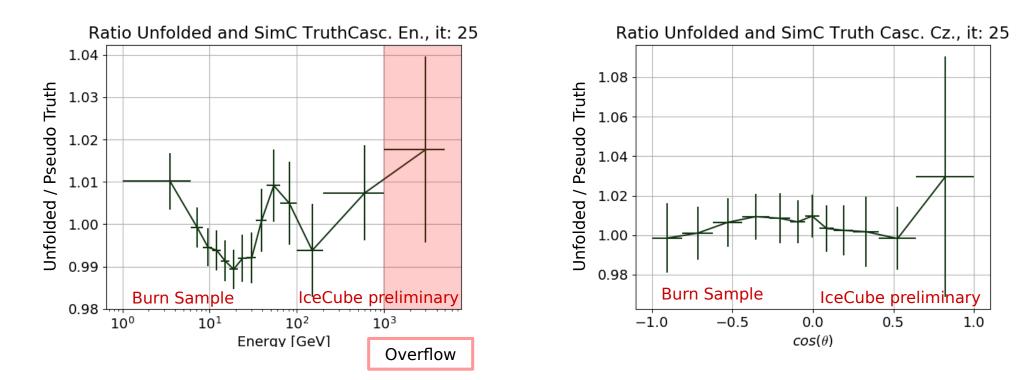
- Blind Check: TSU-Ratios, 15 iterations,
- Reasonable consistency

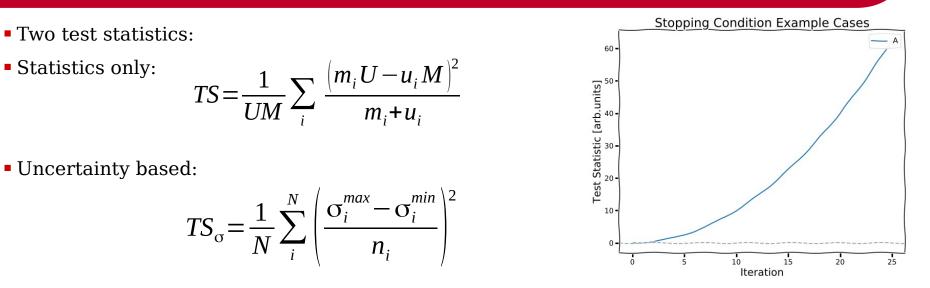


TSU: Burn Sample Consistency

JG

- Blind Check: TSU-Ratios, 25 iterations,
- Reasonable Consistency

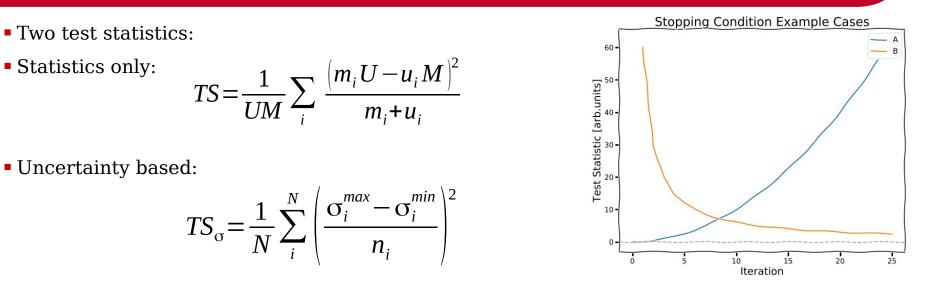




• The stopping condition plots consist of calculating a test statistic for every iteration between unfolded and pseudo truth – can take many different shapes.

Hierarchy of procedure:

• In case of divergence: Stop after 4 iterations, as advised by D'Agostini (A)



• The stopping condition plots consist of calculating a test statistic for every iteration between unfolded and pseudo truth – can take many different shapes.

- In case of divergence: Stop after 4 iterations, as advised by D'Agostini (A)
- In case of convergence: Use systematics based stopping condition. (B)

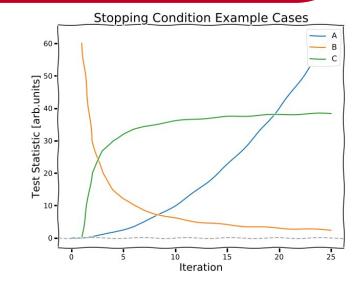
Two test statistics:

• Statistics only:

$$TS = \frac{1}{UM} \sum_{i} \frac{\left(m_{i}U - u_{i}M\right)^{2}}{m_{i} + u_{i}}$$

• Uncertainty based:

$$TS_{\sigma} = \frac{1}{N} \sum_{i}^{N} \left(\frac{\sigma_{i}^{max} - \sigma_{i}^{min}}{n_{i}} \right)^{2}$$



• The stopping condition plots consist of calculating a test statistic for every iteration between unfolded and pseudo truth – can take many different shapes.

- In case of divergence: Stop after 4 iterations, as advised by D'Agostini (A)
- In case of convergence: Use systematics based stopping condition. (B)
- In case of systematic dominance after 1 iteration: Use statistics only stopping condition. (C)

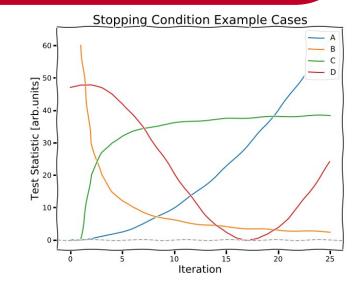
Two test statistics:

• Statistics only:

$$TS = \frac{1}{UM} \sum_{i} \frac{\left(m_{i}U - u_{i}M\right)^{2}}{m_{i} + u_{i}}$$

• Uncertainty based:

$$TS_{\sigma} = \frac{1}{N} \sum_{i}^{N} \left(\frac{\sigma_{i}^{max} - \sigma_{i}^{min}}{n_{i}} \right)^{2}$$



• The stopping condition plots consist of calculating a test statistic for every iteration between unfolded and pseudo truth – can take many different shapes.

- In case of divergence: Stop after 4 iterations, as advised by D'Agostini (A)
- In case of convergence: Use systematics based stopping condition. (Minimize distribution) (B)
- In case of systematic dominance after 1 iteration: Use statistics only stopping condition (C)
- Otherwise: Minimize the distribution (D)

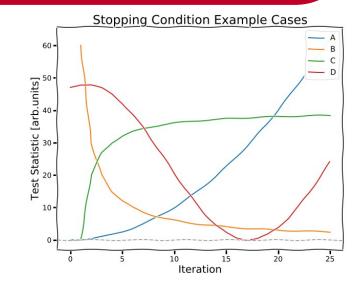
Two test statistics:

• Statistics only:

$$TS = \frac{1}{UM} \sum_{i} \frac{\left(m_{i}U - u_{i}M\right)^{2}}{m_{i} + u_{i}}$$

• Uncertainty based:

$$TS_{\sigma} = \frac{1}{N} \sum_{i}^{N} \left(\frac{\sigma_{i}^{max} - \sigma_{i}^{min}}{n_{i}} \right)^{2}$$



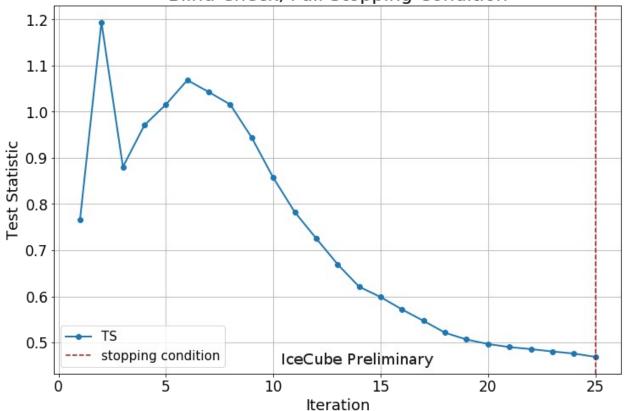
• The stopping condition plots consist of calculating a test statistic for every iteration between unfolded and pseudo truth – can take many different shapes.

- In case of divergence: Stop after 4 iterations, as advised by D'Agostini (A)
- In case of convergence: Use systematics based stopping condition. (Minimize distribution) (B)
- In case of systematic dominance after 1 iteration: Use statistics only stopping condition (C)
- Otherwise: Minimize the distribution (D)
- Burn sample test case: D, minimum at 20 iterations

Stopping condition

JG

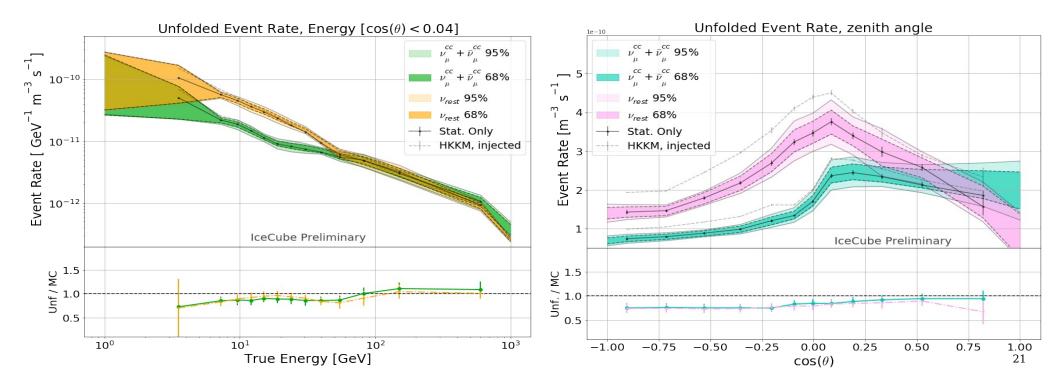
- For full data sample
- Only small variation above ~ 20 iterations.



Blind Check, Full Stopping Condition

Unfolded Event Rate

- 2 channels based on idealized event signature in detector
- v^{cc}_{μ} + \overline{v}^{cc}_{μ}
- Everything else: v_{rest}
- ~1400 trials



Closing Remarks

JG

- Unfolded measurement of atmospheric neutrino flux at south pole
- Allows model builders to test predictions on many parameters
- Some tension with expectation below 10 GeV and in up going region
- Data release and publication in preparation

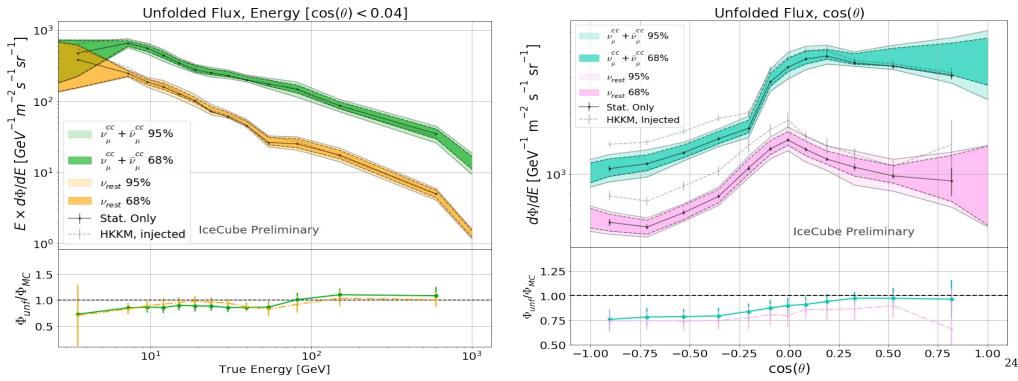
Backup

• From here

Addendum: Unfolded Flux

JG

- Same 2 channels, now also compensated for cross sections
- $v^{cc}_{\mu} + \overline{v}^{cc}_{\mu}$
- Everything else: v_{rest}
- ~ 75 trials



Systematics

Random sampling of systematics due to non-linear effects						
■ ~1400 trials						Analysis Chain:
Oscillation and Weighting Systematics						
Systematic	Value	Prior				Sample
θ ₁₂	34.5°	± 1.1° (1)				\checkmark
θ ₂₃	41°	± 0.11° (1)				Osc. re-weighting
θ ₁₃	8.41°	± 0.17° (1)				
A	$\overline{\mathbf{Z}} = \mathbf{C} + \mathbf{E} + \lambda/2$	+0.10 = 5 = 1/2(1)	Discrete Systematics			▼
Δm ₂₁	7.56 e ⁻⁵ eV ²	±0.19 e ⁻⁵ eV ^{2 (1)}	Systematic	Value	Prior	
Δm ₃₁	2.55 e ⁻³ eV ²	$\pm 0.04 e^{-3} eV^{(1)}$	Dom eff	1.0	10%	Discrete sys.
δ_{cp}	252 °	± 24° (1)	Hole ice	25	±5	
Livetime	4.8 [yr]	1%	Bulk ice scattering	1.0	10%	Unfolding
Muon Scale	1.0	5%	Bulk ice absorbtion	1.0	10%	omolding
Noise	1.0	10%				

1: Salas et al, arXiv: 1708.01186

3: IceCube Standard

Efficiency

• Definiton:

$$\epsilon = \frac{N_{sel}}{N_{gen}} = \frac{R_{sel}V_{fidu}}{R_{gen}V_{gen}}$$

• With the number of efficiency corrected unfolded events:

$$N_{unf}^{\epsilon} = \frac{N_{unf}}{\epsilon} = \frac{R_{unf}V_{fidu}}{\left(\frac{R_{sel}V_{fidu}}{R_{gen}V_{gen}}\right)} = \frac{R_{unf}R_{gen}V_{gen}}{R_{sel}}$$

• To get a rate independent from the volume, it is prudent to modify the efficiency; we divide out the generator volume to arrive at:

$$\epsilon' = \frac{N_{sel}}{N_{gen}^{\blacktriangleright}/V_{gen}} = \epsilon V_{gen} \longrightarrow R_{unf}^{\epsilon'} = \frac{N_{unf}}{\epsilon V_{gen}} = \frac{R_{unf}R_{gen}}{R_{sel}}$$