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Motivation
  Goal: Provide model agnostic 'true' data sample for 
model builders to test against

 Goal: Accurate 'beam' measurement for any 
experiment depending on atmospheric neutrinos 

 Means: Model agnostic Unfolding

 Blind: Analysis tested on MC and 10% data sample.
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IceCube / DeepCore
 Antarctica

 1km3 instrumented ice

 Cherenkov radiation

 5160 optical modules

 Outer detector as muon veto
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Data
Sample

Response
Matrix

Unfolding Philosophy

 Both forward- and unfolding depend on the detector response matrix

 In this analysis we build the response matrix by comparing MC truth to reconstructed 
MC

 

 

 

 

 Unfolding provides not model parameters, but physical quantities

 Unfolding constrains data via parameters

→ Unlike forward folding we cannot fit values of parameters

 Based on our systematic uncertainties, we constrain our unfolded bin content

Forward Folding

UnFolding

Truth
Sample
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 Bayesian Unfolding (D'Agostini)

P0(i | j)=
P ( j | i)×P0(i)

P0( j)

i = truth bin
j = reco. bin

 Prior information about our measurement: If we draw a sample from the MC truth 
distribution, what is the probability to be draw from bin i?
 Normalization: Probability to observe an event in bin j. Given by the logic of requiring an 
event in true bin i and for that event to contribute to bin j, and summing for all bins.
(This is why it's fair to call it a normalization constant)
 All terms known to precision of MC

Unfolding Method
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Unfolding Method
 Bayesian Unfolding (D'Agostini)

P0(i | j)=
P ( j | i)×P0(i)

P0( j)

i = truth bin
j = reco. bin

P0( j)=∑
i

[P( j | i)×P(i)]

 Prior information about our measurement: If we draw a sample from the MC truth 
distribution, what is the probability to be draw from bin i?
 Normalization: Probability to observe an event in bin j. Given by the logic of requiring an 
event in true bin i and for that event to contribute to bin j, and summing for all bins.
(This is why it's fair to call it a normalization constant)
 All terms known to precision of MC

IceCube preliminary
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Unfolding Method: Iterative Approach
 Generates unfolding matrix via Bayes' theorem

 Estimates unfolded spectrum U, from measurement M:

 Output of each step is prior for next step.

 Biased towards MC for low iterations → Bias drops with iterations

 Statistical Uncertainty → Grows with number of iterations

 Final number of iterations must be a trade-off between the above two

P0(i | j)=
P ( j | i)×P0(i)

P0( j)

U n=Pn(i | j)×M
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Response Matrix and Channels
 Response matrix constructed from MC

 Reco-side: reconstructed cos(θz), reconstructed energy
and reconstructed track length

 Truth-side: MC PID, MC truth cos(θz) 
and MC truth energy

 PID channels: 

 Weight truth side by: 

 Unfolded quantity is “True In-ice interaction rate per volume [/m3 /s]”

 From these distributions the energy and zenith spectra are calculated

νμ
cc
+ν̄μ

cc     and    νrest+ν̄rest
IceCube preliminary

(t liveV IC)
−1
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Unfolded
Pseudo
sample

Pseudo
Truth

“Sim C”

Burn
Sample

TSU: A Blind Burn Sample Closoure Test
 Problem: When unfolding a real data sample we do not have access to truth 
information like in the MC case

 Aim: Show stability of unfolding method across smearing and unfolding

 Closure test: Truth-Smeared-Unfolded (TSU) test

 Unfold to 25 iterations

 Result: Converges on pseudo-truth to well within statistical uncertainty

 Careful consideration of stopping condition is necessary

Unfolding Smearing Unfolding

Compare via test statistic
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TSU: Burn Sample Consistency
 Blind Check: TSU-Ratios, 1 iteration, 

 Checks consistency in unfolding
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 Blind Check: TSU-Ratios, 15 iterations, 

 Reasonable consistency
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 Blind Check: TSU-Ratios, 25 iterations, 

 Reasonable Consistency
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Setting the Stopping condition
 Two test statistics:

 Statistics only: 

 Uncertainty based:

 The stopping condition plots consist of calculating a test statistic for every iteration between 
unfolded and pseudo truth – can take many different shapes.

Hierarchy of procedure:

 In case of divergence: Stop after 4 iterations, as advised by D'Agostini (A)

TSσ=
1
N ∑

i

N

(σi
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−σi
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)
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UM
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i

(miU−ui M )
2

mi+ui
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Setting the Stopping condition
 Two test statistics:
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unfolded and pseudo truth – can take many different shapes.

Hierarchy of procedure:

 In case of divergence: Stop after 4 iterations, as advised by D'Agostini (A)
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 In case of systematic dominance after 1 iteration: Use statistics only stopping condition (C)
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Setting the Stopping condition
 Two test statistics:

 Statistics only: 

 Uncertainty based:

 The stopping condition plots consist of calculating a test statistic for every iteration between 
unfolded and pseudo truth – can take many different shapes.

Hierarchy of procedure:

 In case of divergence: Stop after 4 iterations, as advised by D'Agostini (A)

 In case of convergence: Use systematics based stopping condition. (Minimize distribution) (B)

 In case of systematic dominance after 1 iteration: Use statistics only stopping condition (C)

 Otherwise: Minimize the distribution (D)

 Burn sample test case: D, minimum at 20 iterations
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Stopping condition
 For full data sample

 Only small variation above ~20 iterations.
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Unfolded Event Rate
 2 channels based on idealized event signature in detector



 Everything else:

 ~1400 trials

νμ
cc
+ν̄μ

cc

νrest
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Closing Remarks

 Unfolded measurement of atmospheric neutrino flux at south pole

 Allows model builders to test predictions on many parameters

 Some tension with expectation below 10 GeV and in up going region

 Data release and publication in preparation
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Backup
 From here
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Addendum: Unfolded Flux
 Same 2 channels, now also compensated for cross sections

                

 Everything else:

 ~ 75 trials

νμ
cc
+ν̄μ

cc

νrest
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Systematics
 Random sampling of systematics due to non-linear effects

 ~1400 trials

Oscillation and Weighting Systematics

Systematic Value Prior

θ
12

34.5o ± 1.1o (1)

θ
23

41o ± 0.11o (1)

θ
13

8.41o ± 0.17o (1)

Δm
21

7.56 e-5 eV2 ±0.19 e-5 eV2 (1)

Δm
31

2.55 e-3 eV2 ± 0.04 e-3 eV (1)

δ
cp

252o ± 24o (1)

Livetime 4.8 [yr] 1% 

Muon Scale 1.0 5% 

Noise 1.0 10% 
1: Salas et al, arXiv: 1708.01186

Discrete Systematics

Systematic Value Prior

Dom eff 1.0 10% 

Hole ice 25 ±5 

Bulk ice 
scattering

1.0 10% 

Bulk ice 
absorbtion

1.0 10% 

3: IceCube Standard

Sample

Osc. re-weighting

Discrete sys.

Unfolding

Analysis Chain:
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Efficiency
 Definiton:

 With the number of efficiency corrected unfolded  events:

  To get a rate independent from the volume, it is prudent to modify the efficiency; 
we divide out the generator volume to arrive at:

ϵ  =  
N sel

N gen

  =  
RselV fidu

RgenV gen

N unf
ϵ   =  

Nunf
ϵ =

Runf V fidu

( RselV fidu

RgenV gen
)

  =   
Runf RgenV gen

Rsel

Runf
ϵ ' =

N unf

ϵV gen

 =  
Runf Rgen

Rsel

ϵ '  = 
N sel

N gen/V gen

=ϵV gen
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