

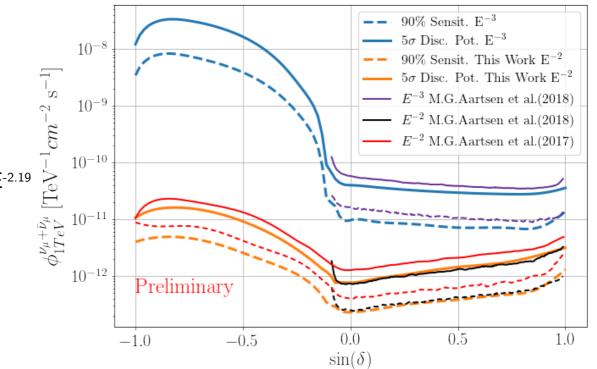
Neutrino Point Source Searches with 10 years of IceCube Data

Tessa Carver, Nahee Park, Teresa Montaruli

Point Source Searches

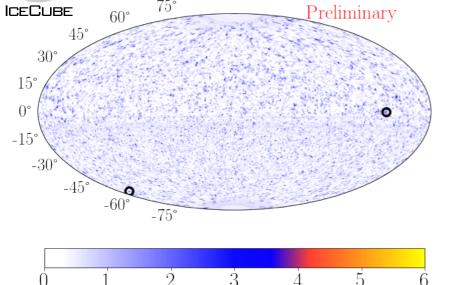
- Diffuse astrophysical flux already discovered.
- Data dominated by atmospheric events. However, we expect :
 - \rightarrow <u>*Clustered*</u> or <u>correlated</u> signal (in space and/or time)
- \rightarrow **Uniform** Background 10^{-4} Conv. atmospheric $\nu_{\mu} + \bar{\nu}_{\mu}$ (best-fit) Blind all-sky Search 10^{-5} Prompt atmospheric $\nu_{\mu} + \bar{\nu}_{\mu}$ (flux limit (2016)) $E_{\nu}^2 \cdot \Phi_{\nu+\bar{\nu}} / \operatorname{GeV}^{-1} \operatorname{cm}^{-2} \operatorname{s}^{-1} \operatorname{sr}^{-1}$ Astrophysical $\nu_{\mu} + \bar{\nu}_{\mu}$ (best-fit) 10^{-6} HESE unfolding: PoS(ICRC2017)981 Search Motivated 10^{-7} Source Locations 10^{-8} 10^{-9} ceCube Preliminary 10^{3} 10^{5} 10^{6} 10^{4} 10^{7} E_{ν}/GeV

Previous Point Source Analyses


• 7 year All-sky search :

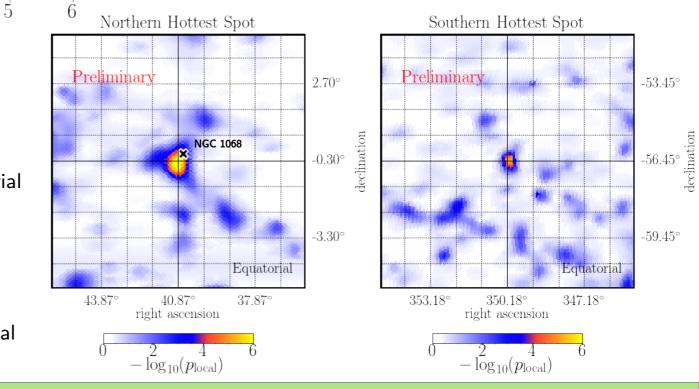
 \rightarrow General search for Neutrino sources (M.G. Aartsen et al. 2017)

- 8 year Northern-sky Search : \rightarrow Optimised for observed diffuse flux $\propto E^{-2.19}$ (M. G. Aartsen et al. 2018)
- 10 year search :
 - \rightarrow same method as 7 year all-sky
 - 1) new source catalog


DE GENÈVE

2) updated event selection

Analysis	Data Selection	All-Sky Scan Hotspots	Source List Results
All-Sky Search	7 years μ tracks	North: $P_{post-trial} = 29\%$ South: $P_{post-trial} = 17\%$	2 ~1% pre-trial p-values North : 1ES 1959+650, $P_{post-trial} = 54\%$ South : PKS 1406-076, $P_{post-trial} = 37\%$
Northern Sky search	8 years diffuse μ tracks	North: $p_{post-trial} = 27\%$	4 ~1% pre-trial p-values 4C 38.41, $P_{post-trial} = 23.7\%$ (post-trial)


10 year All-Sky Scan Results

 $-\log_{10}(p_{local})$

4

- Evaluate likelihood of signal over background for grid over entire sky.
- **Hottest point** = position with smallest p-value in each hemisphere.

Hottest Point in North : $\delta \ge -5^{\circ}$ $RA = 40.87^{\circ}$, $Dec = -0.30^{\circ}$ = 61.5 , $\gamma = 3.4, \ TS = 25.3$ n _{signal}

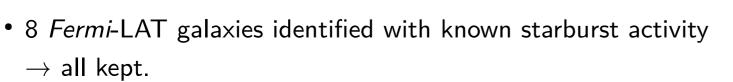
 $-\log 10(pval) = 6.45 \Rightarrow 9.9\%$ post-trial

Hottest Point in South : $\delta < -5^{\circ}$

UNIVERSITÉ

DE GENÈVE

 $RA = 350.18^{\circ}$, Dec -56.45° $n_{_{signal}}{=}17.8,\,\gamma=3.3,\,TS{=}~20.0$ $-\log 10(pval) = 5.37 \Rightarrow 75\%$ post-trial

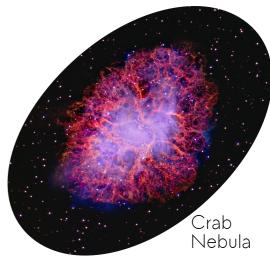


Updated Individual Source List

New source candidates list of 110 Galactic & Extra-galactic sources :

• Top 5% of extra-galactic sources organised by Flux-integral >1 GeV from *Fermi*-LAT 3FGL catalog :

 \rightarrow BL Lac, Flat-spectrum radio quasar (FSRQ), Starburst galaxies, other Active Galactic Nuclei (AGN).


- Galactic sources: model flux from $\gamma\text{-}\mathrm{ray}$ obervations >50% of the sensitivity flux.
- Result :

UNIVERSITÉ

DE GENÈVE

- \rightarrow Northern Sources (87 extra-galactic, 10 Galactic)
- \rightarrow Southern Sources (11 extra-galactic, 2 Galactic)

Most significant Source List Results

N	lame	Ra (°)	Dec (°)	ΤS	n _{signal}	γ	$-\log_{10}(p_{local})$	Pre-trial σ
N	IGC 1068	40.67	-0.01	17.04	50.4	3.16	4.74	4.13
	XS 0506+056	77.35	5.70	13.05	12.32	2.08	3.72	3.55
Ρ	KS 1424+240	216.76	23.8	9.88	41.47	3.94	2.8	2.95
	iB6 1542+6129	235.75	61.50	9.29	29.72	3.02	2.74	2.91
	1GRO 1908+06	287.17	6.18	3.48	4.22	1.96	1.42	1.77
Ρ	PKS 1717+177	259.81	17.75	2.96	19.82	3.65	1.32	1.66
Ρ	KS 2233-148	339.14	-14.56	2.8	5.32	2.80	1.26	1.6
В	2 1215+30	184.48	30.12	2.67	18.60	3.39	1.09	1.4
N	1 31	10.82	41.24	2.11	10.99	4.0	1.09	1.4
40	C +55.17	149.42	55.38	1.61	11.88	3.27	1.02	1.31
	C +55.17				11.88	3.27		1.31

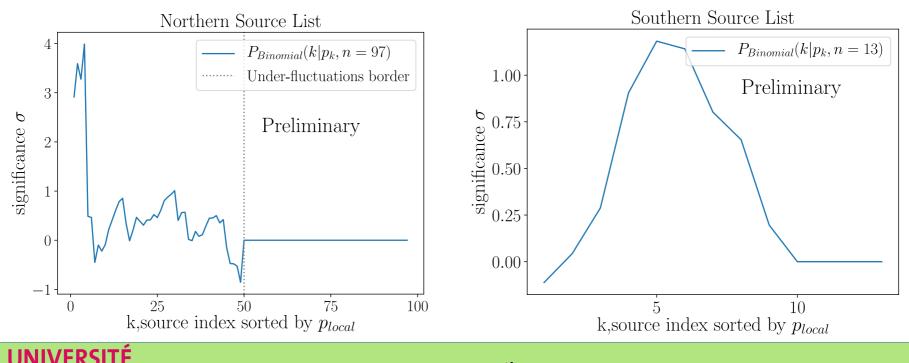
 Evidence for a flaring Blazar from a flare in 2014. (M. G. Aartsen et al. 2018)

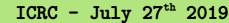
UNIVFRSITÉ

DE GENÈVE

- Most signifcant excess in the Northern Source List. \rightarrow 2.9 σ post-trial
- 0.35° from the hottest point in the sky.

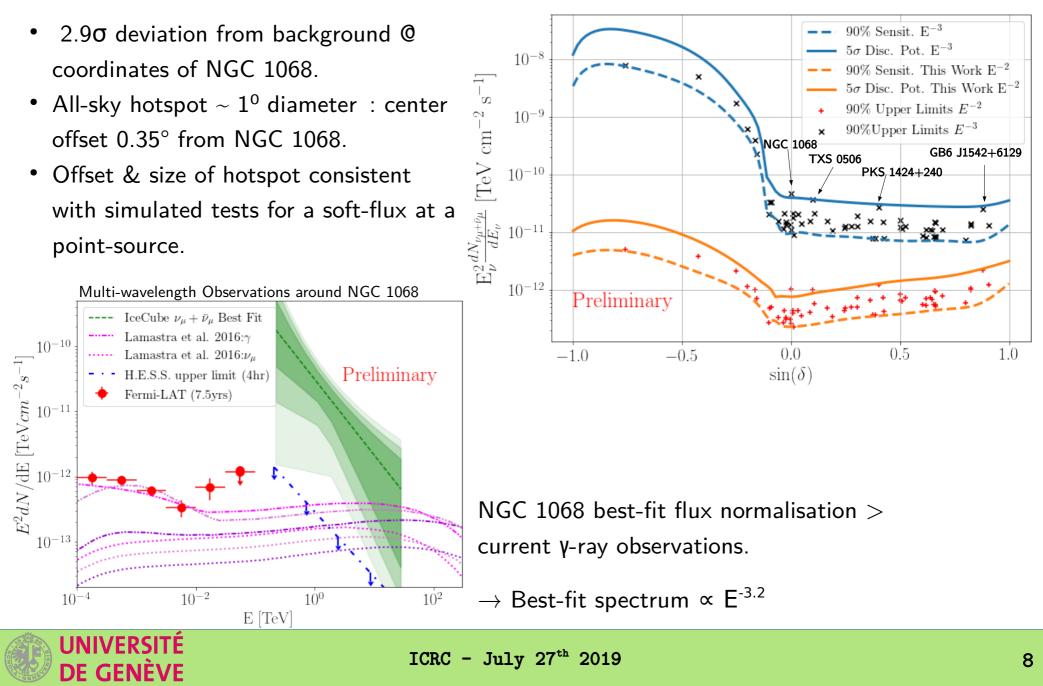
DE GENÈVE


Source Population Results


Search for excess of hotspots \rightarrow A significant p-value demonstrates inconsistency with background-only for entire catalog.

- Probability of k or more sources passing a threshold out of a catalog of N.
- 4σ pre-trial where k=4 in Northern Catalog.

 \rightarrow 3.3 σ post-trial. (2.25 w/o TXS 0506+056) to account for N other possible excesses

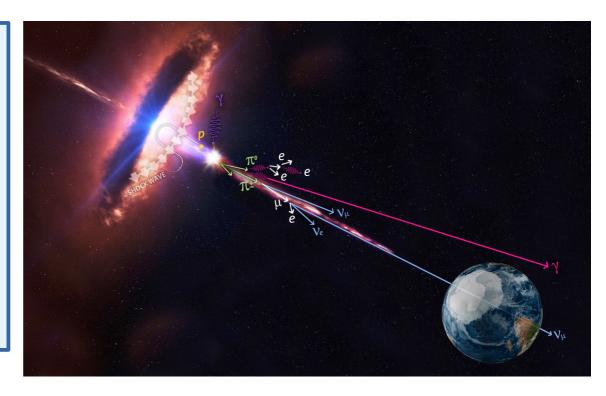

• Includes NGC 1068, TXS 0506+056, PKS 1424+240,GB6 J1542+6129

Outlook on Results

Summary

- No new neutrino steady-state source discovered.
- NGC 1068 in coincidence with Northern Hotspot \rightarrow 2.9 σ post-trial p-value.
- Source List Catalog is inconsistent with background only hypothesis at 3.3σ \rightarrow Includes: NGC 1068, TXS 0506+056, PKS 1424+240,GB6 J1542+6129
- Best-fit neutrino flux for NGC 1068 > current γ -ray observations.
- Results demonstrate a strong motivation to continue to analyse the objects in these catalogs.

Back up



ICRC - July 27^{th} 2019

Messenger Particles

- Protons / Cosmic Rays : directly from the astrophysical sources.
- Photons : produced by leptonic and hadronic processes at the source.
- **Neutrinos** : produced only by Hadronic CR interactions.

Hadronic Interactions :

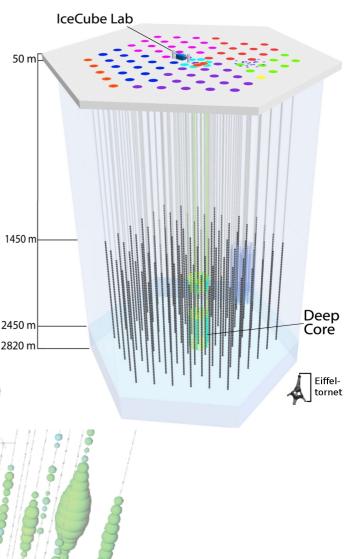
$$pp \rightarrow \pi^{0} \rightarrow \gamma \gamma$$

$$pp \rightarrow \pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$$

$$pp \rightarrow \pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu} \rightarrow \nu_{\mu} + e^{\pm} + \overline{\nu_{e}} + \nu_{\mu}$$

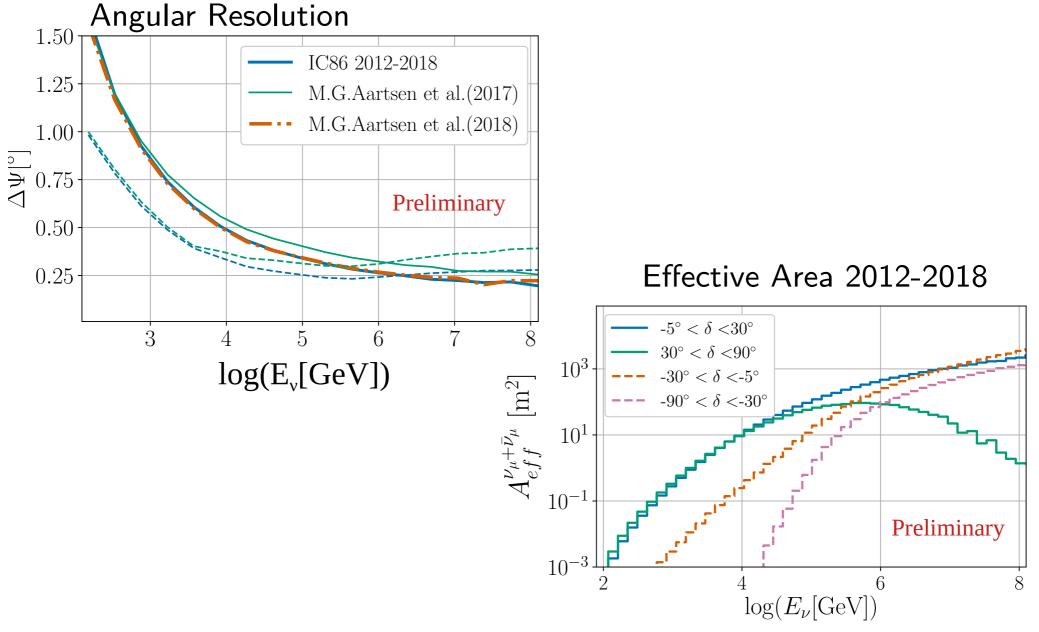
Photons and CRs particles are attenuated and/or **deviated** on their journey towards the earth.

Neutrinos travel unimpeded accross the universe so they can point **directly towards the source**.


IceCube Detector

What Do We Detect ?

- Neutrinos interact in the ice producing charged leptons.
- Charged leptons then induce Cherenkov radiation during their propagation through the ice.


IceCube Events ?

- High Energy Muon tracks in the ice.
- From: Atmospheric Muons, and Charged Current ν_{μ} interactions.
- Angular Resolution $\sim 1^{\circ}$
- Poor Energy resolution

New Selection Performance

ICECUBE

Updated Point Source Searches

Search	Advantages	Disadvantages	Less	
All Sky Scan	 Allows for sources not well observed by other messengers including unexpected source candidates 	 Large penalty from trials. Requires a very strong source to be more significant than any possible background fluctuation. 	Required Source Knowledge Less sensitivity	
Source List Search	 Provides significance and fit information specific to individual sources. 	 Limited to low number of possible candidates. Limited by sensitivity at the source location. 		
Stacking Search	 Gain large factors in sensitivity especially in regions where IceCube is less sensitive (Southern Hemisphere) 	 Requires more source knowledge. Most stacked locations should emit a neutrino flux → strong penalty if an inaccurate weighting scheme is implemented. 	Increasing Knowledge & Sensitivity	

Stacking Results

- Stacked 3 catalogs of Galactic objects
- Weighted the sources in each catalog by the integral flux above 10 TeV as estimated by Gamma ray observations.
- All consistent with background.

Catalog	Number of sources	TS	γ	n _{signal}	p-value
Super Nova Remnants (SNR)	23	1.49	3.55	23.9	0.11
Pulsar Wind Nebula (PWN)	33	0	-	-	1.0
Unidentified Objects (UNID)	58	0.09	2.39	3.28	0.4

ICECUBE

Cassiopeia A : SNR

UNIVERSITÉ

DE GENÈVE

