

Outline

- Introduction
- Sensitivity to NMO
- Early physics
- Summary & Outlook

Introduction to KM3NeT

KM3NeT - large volume neutrino telescopes at the bottom of the Mediterranean.

Figure: Illustration of KM3NeT & ν_{μ} detection.

ORCA research programme

Introduction

Sensitivity not Sensitivity due to dependent on effects/baseline ORCA Earth properties in Earth **Neutrino** mass Dark matter [4]; ordering [1]; Neutrinos from ν_{τ} appearance 1 supernova collapses [5]; Non-standard Atmospheric muon interactions [2]; flux [6]. Sterile neutrinos [3];

NMO analysis: intro

Figure: Illustration of two possible mass orderings [7].

u-oscillation probabilities through Earth are sensitive to the NMO.

Figure: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ probability, depending on the NMO.

 ν -oscillation probabilities through Earth are sensitive to the NMO.

• flavor (track \leftrightarrow shower), energy & direction reco of ν required.

Figure: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ probability, depending on the NMO.

 ν -oscillation probabilities through Earth are sensitive to the NMO.

- flavor (track \leftrightarrow shower), energy & direction reco of ν required.
- → different expectation values in E_{ν} vs $\cos \theta_z$ histograms, depending on NMO.

Figure: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ probability, depending on the NMO.

 ν -oscillation probabilities through Earth are sensitive to the NMO.

- flavor (track \leftrightarrow shower), energy & direction reco of ν required.
- → different expectation values in E_{ν} vs $\cos \theta_z$ histograms, depending on NMO.

Figure: $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu}$ probability, depending on the NMO.

Figure: Example of expected track-like neutrino events after 3k hef years [8].

 Introduction
 Sensitivity to NMO
 Early physics
 Summary & Outlook

 ○○
 ○○
 ○

NMO analysis: sensitivity

Figure: KM3NeT/ORCA projected sensitivity to the NMO after 3 years of data taking.

Message: $\sim 2.5-4.5\sigma$ sensitivity for the NMO can be achieved after 3 years of data taking.

It will take time to reach 115-DU ORCA detector.

- It will take time to reach 115-DU ORCA detector.
- What physics can be explored during construction?

- It will take time to reach 115-DU ORCA detector.
- What physics can be explored during construction?

Investigate 7-DU ORCA 1-year Monte-Carlo projections for:

- It will take time to reach 115-DU ORCA detector.
- What physics can be explored during construction?

Investigate 7-DU ORCA 1-year Monte-Carlo projections for:

• sensitivity to ν oscillation pars. Δm_{32}^2 , θ_{23} ;

- It will take time to reach 115-DU ORCA detector.
- What physics can be explored during construction?

Investigate 7-DU ORCA 1-year Monte-Carlo projections for:

- sensitivity to ν oscillation pars. Δm_{32}^2 , θ_{23} ;
- $lue{}$ sensitivity to $u_{ au}$ charged-current (CC) normalisation.

Early physics: Δm_{32}^2 , θ_{23} with 7-DU ORCA after 1 year

Figure: 90% CL contours, reference map: a [9], b [10], c [11], d [12], e [13], f [8].

Message: potential input to global fits.

Early physics 0000

Early physics: ν_{τ} CC norm.

 $N_{\tau}^{\rm cc}$ scales the expected nr. of ν_{τ} CC interactions.

Early physics

Early physics: ν_{τ} CC norm.

 $N_{\tau}^{\rm cc}$ scales the expected nr. of ν_{τ} CC interactions.

 $N_{\tau}^{\rm cc} \neq 1$ could indicate:

- Physics outside $3 \times 3 \nu$ oscillation.
- **Deviations** from the predicted cross-section for ν_{τ} CC.

Early physics: ν_{τ} CC norm. with 7-DU ORCA after 1 year

Figure: The sensitivity to $N_{ au}^{\rm cc}$ of the 7-DU ORCA, depending on the data accumulation period.

Message: early measurement of $N_{\tau}^{\rm cc}$ is possible.

• 4 ORCA DUs collecting data, more lines to come!

- 4 ORCA DUs collecting data, more lines to come!
- \sim 2.5 4.5 σ sensitivity to the NMO can be achieved after 3 years of data taking with full KM3NeT/ORCA.

- 4 ORCA DUs collecting data, more lines to come!
- $\sim 2.5 4.5\sigma$ sensitivity to the NMO can be achieved after 3 years of data taking with full KM3NeT/ORCA.
- **E**arly measurements of $(\Delta m_{32}^2, \theta_{23})$ and N_{τ}^{cc} are possible during construction phase.

- 4 ORCA DUs collecting data, more lines to come!
- $\sim 2.5 4.5\sigma$ sensitivity to the NMO can be achieved after 3 years of data taking with full KM3NeT/ORCA.
- Early measurements of $(\Delta m_{32}^2, \theta_{23})$ and N_{τ}^{cc} are possible during construction phase.

Thank you for your attention!

Appendix: parameter configuration

Configuration of oscillation and systematic parameters for Figs. 5 and 6. See [1] for more info.

Parameter	fixed/prior/free ORCA	fixed/prior/free sub-array
Δm_{21}^2	fixed to $7.4 \cdot 10^{-5} \text{ eV}^2$	fixed to $7.4 \cdot 10^{-5} \text{ eV}^2$
$\sin^2 \theta_{12}$	fixed to 33.62°	fixed to 33.62°
$\sin^2 heta_{13}$	8.54°, 0.15° prior (NO), 8.58°, 0.14° prior (IO)	fixed to 8.54°
δ_{CP}	free	fixed to 234°
flux $ u_{\mu} \leftrightarrow \bar{ u}_{\mu}$ skew	10% prior	10% prior
flux $ u_e \leftrightarrow \bar{ u}_e$ skew	10% prior	10% prior
flux $\nu_{\mu} \leftrightarrow \nu_{e}$ skew	10% prior	10% prior
flux E-tilt	free	free
flux $\cos \theta$ -tilt	free	free
NC cross-sec. norm.	10% prior	10% prior
norm. track-like	free	free
norm. shower-like	free	free Niklhet
norm, middle sample	free	

Appendix: bibliography I

- S. Hallmann and B. Strandberg, on behalf of the KM3NeT collaboration, PoS(ICRC2019)1019 (2019).
- N. Chowdhury, on behalf of the KM3NeT collaboration, PoS(ICRC2019)931 (2019).
- A. Domi, on behalf of the KM3NeT collaboration, PoS(ICRC2019)870 (2019).
- D. Lopez-Coto and S. Navas, on behalf of the KM3NeT collaboration, PoS(ICRC2019)536 (2019).
- M. Colomer and M. Lincetto, on belalf of the KM3NeT collaboration, PoS(ICRC2019)857 (2019).
- M. Ageron and others, arXiv:1906.02704 (2019).

Appendix: bibliography II

- S. Bourrett and L. Quinn, on behalf of the KM3NeT collaboration, DOI: 10.5281/zenodo.1300771 (2018).
- M. G. Aartsen and others, Phys. Rev. Lett. 120, 071801 (2018).
- K. Abe and others, Phys. Rev. D 97, 072001 (2018).
- M. Wascko, DOI: 10.5281/zenodo.1286752 (2018).
- A. Aurisano, DOI: 10.5281/zenodo.1286760 (2018).
- M Sanchez, DOI: 10.5281/zenodo.1286758 (2018).