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 The Pierre Auger Observatory
Surface detector (SD)

100% duty cycle

SD-750m
23.5 km2

61 WCDs

SD-1500m
3000 km2

1600 WCDs

Water-Cherenkov 
Detector
(WCD)

Fluorescence detector (FD)
15% duty cycle

4 units x 6 telescopes
overlooking SD-1500m
FoV 30o x 30o

Minimum elevation 1.5o 

1 units x 3 telescopes
overlooking SD-750m
FoV 30o x 30o

Minimum elevation 30o
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Underground muon detector (UMD)
100% duty cycle

 The Pierre Auger Observatory

UMD-750m  
23.5 km2

61x30m2 Plastic Scintillators
buried 2.3m triggering from WCDs 

750 m

Muon detect or

Sur f ace det ect or

Nor t hern t wi n

Sout hern t wi n

Physics observables are basically extracted from:
● signal size     → number of muon  (this talk)
● signal timing → timing of muon (see PoS(202) poster session)

Engineering Array:
Operated until Nov. 2017

EA served for:
Validation of detection system   (End-to-End)
Optimization of optical devices  (PMT→SiPM)
Optimization of electronics         (ASICs)
Optimization of dynamic range   (2 extra analog channels)

1 year of data, 1742 event with energy 3 x 1017 – 2 x 1018 eV and zenith angle < 45o
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 UMD: from raw traces to muons

Highly segmented 
scintillators: 64 per unit

Binary traces in raw (real) events

32 strips/side

Sampling @ 
3.125 ns
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3 muons (“111” or “101” minimal pattern required) + 1 noise
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 UMD: efficiency and resolution

750 m

Muon detect or

Sur f ace det ect or

Nor t hern t wi n

Sout hern t wi n

Twin detectors:
30m2 North + 30m2 South of 
same WCD highly 
segmented (4+4 units)

N-S separation
~ 20 m

Efficiency  
Resolution 

→ units of different areas (5m2 & 10m2)
→ units of identical areas (30m2 Vs 30m2)

based on

Ratio of counts per unit r=
ϵ1
ϵ2
⋅
a1
a2

ϵi , ai efficiency and areawhere

^
(
ϵ1
ϵ2

)=
a1
a2

⋅
⟨N 2⟩

⟨N 1⟩

Rel. eff. estimator

Relative efficiency

^
(
ϵ1
ϵ2

)=0.96±0.08
^

(
ϵ1
ϵ2

)=0.83±0.07
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 UMD: efficiency and resolution

750 m

Muon detect or

Sur f ace det ect or

Nor t hern t wi n

Sout hern t wi n

Twin detectors:
30m2 North + 30m2 South of 
same WCD highly 
segmented (4+4 units)

N-S separation
~ 20 m

Efficiency  
Resolution 

→ units of different areas (5m2 & 10m2)
→ units of identical areas (30m2 Vs 30m2)

based on

Square ratio of mean 
and variance (

σ
⟨N ⟩ )

2

Resolution

Resol. estimator

^

(
σ

⟨N ⟩ )
2

=2(
N1−N 2

N1+N 2
)
2
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 UMD: systematic uncertainties I
Sources of systematic uncertainty analyzed:

i. Calibration procedure → uncertainty in the “operation” point of each of 2240 electronic channels

ii. Soil density variations → uncertainty in shielding by overburden

iii.Shape of muon lateral distribution function → slope         parametrization based on simulations
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 UMD: systematic uncertainties II
Sources of systematic uncertainty analyzed:

i. Efficiency correction → dependent time width selected to identify signals

ii. Constant Intensity Cut (CIC) correction → uncertainty in parametrization

9.9% 2.3%σ /ρ450

i. ii.

Data based

Total uncertainty:

σ /ρ35 14.3%
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 Muon densities Vs energy ⇒ρ35(E)

✔ Geometry & Energy from SD alone
✔ Event core contained in UMD hexagon
✔ Zenith < 45o

ρ35(E)=a⋅(E /1018eV )
b

Pr

Fe    

Data    

:

:

: b=0.89±0.04 ( stat )±0.04( sys)

b=0.91

b=0.92

8% (EPOS) – 14% (QGSJet) below measurements→

First direct measurement of the muon densities at energies 1017.3 eV < E < 1018.3 eV
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 Comparison with other Auger measurements I

EPOS QGSJet

zα=
⟨ln (α)⟩−⟨ ln(α)⟩p
⟨ln (α)⟩Fe−⟨ ln(α)⟩p

same composition sensitive 
observable for 

zX max=
⟨ ln (A )⟩

ln(56)

Rμ

Xmax
ρ35

SD
FD
UMD 
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Xmax ,ρ35Bi-parametric analysis:
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EPOS
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38%

50%

EPOS

QGSJet

38%

53%

muon deficits in LHC-tuned hadronic models

@1017.5 eV @1018.0 eV

Xmax ,ρ35

 Comparison with other Auger measurements II
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 Final remarks
✔ An engineering array for the Underground Muon Detector (UMD) was fully operative at the 

Pierre Auger Observatory and was used to thoroughly validate the detection system

✔ For the production phase several hardware improvements were implemented (see 
PoS(ICRC2019)202 in the poster session)

✔ The first direct observations of a device dedicated exclusively to measuring the muonic 
component of EAS were presented

✔ In the energy range 3x1017 eV to  2x1018 eV simulations fail to reproduce muon densities 
even for LHC-tuned hadronic interaction models

✔ Compared to data, the combined analysis of                  showed a discrepancy ranging from 
38% to 53% depending on the model 

✔ The combined muon analysis at high (SD) and low (UMD) energies match the trend in 
composition observed with the FD in the whole energy range

Xmax ,ρ35
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