

Setting Upper Limits on the Local Burst Rate Density of Primordial Black Holes Using HAWC

Kristi L. Engel

Alison Peisker, Pat Harding, Joshua Wood, Israel Martinez-Castellanos, Kirsten Tollefson, Andrea Albert, and the HAWC Collaboration

What is a PBH?

- Primordial Black Holes (PBHs) are believed to have been created by density fluctuations in the early Universe
 - PBHs in certain mass ranges proposed as dark matter candidates
- Like all black holes, PBHs undergo Hawking Radiation
- PBHs could be as large as supermassive black holes or as small as the Planck scale
 - PBHs with an initial mass of ~5×10¹⁴ g are expected to be expiring today, emitting a burst of gamma rays in HAWC's energy range (GeV—TeV) during the final seconds of their lives

The HAWC Observatory

- HAWC's wide field-ofview, day & night, eliminates the statistical restrictions other detectors may experience
- Previous approaches using Milagro (and early HAWC) data were not optimized for PBHs

HAWC Blind Transient Search

All-sky transient search

- 2.1° x 2.1° bins in right ascension and declination
- Sliding time windows of length 0.2, 1, and 10 seconds
- Stores the probability value (p-value) for all events that pass a reporting threshold

This PBH Analysis

- Designed based on the format of the transient search data
- Uses 3 years of HAWC data
- No significant detection \rightarrow places an upper limit

PBH Energy Spectrum

Adapted from arXiv:1510.04372

Our Analysis

- 1. Simulate PBH burst source points in HAWC's FoV
- 2. Use software to determine expected signal at HAWC from each of these points
- 3. Combine with "burst" data and background from blind transient search to form a model and calculate log likelihoods
- 4. Calculate a test statistic and iterate analysis over the burst rate to determine the 99% CL upper limit

PBH Source Point Monte Carlo

- 1. Generate points uniformly in x, y, and z
- 2. Throw out points with $r = \sqrt{x^2 + y^2 + z^2} > 0.5$ pc
 - Creates uniform sphere
- 3. Throw out points with zenith angle $\theta > 50^{\circ}$
 - ➡ Results in 18% of events in HAWC's FoV

E [GeV]

zenith angle (degrees)

Building a Model

• Using the expected signal, $\mu(r, \theta, \tau)$, we can calculate the probability of obtaining N counts given the background, B, for each event (the $prob(\geq N) = \sum_{i=N}^{\infty} \frac{B^i \exp(-B)}{i!} = 1 - \frac{\Gamma(N, B)}{\Gamma(N)}$ "p-value") $p_{thresh} \, cutoff$ Burst duration 0.2s Model requency Data Background PRELIMINARY 10² 10 Excluded from limit calculation 10^{-2} 10^{-15} 10^{-16} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10-17 10⁻⁹ 10⁻⁷ 10⁻⁶ p-value

Building a Model

• Using the expected signal, $\mu(r, \theta, \tau)$, we can calculate the probability of obtaining N counts given the background, B, for each event (the "p-value") $prob(\geq N) = \sum_{i=N}^{\infty} \frac{B^{i} \exp(-B)}{i!} = 1 - \frac{\Gamma(N, B)}{\Gamma(N)}$ $H_{pbh}(p)$ p_{thresh} cutoff Burst duration 0.2s Model requency Data Background PRELIMINARY 10² 10 Excluded from limit calculation 10^{-2} 10^{-15} 10^{-16} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10⁻⁷ 10^{-9} 10⁻⁶ p-value

Building a Model

• Using the expected signal, $\mu(r, \theta, \tau)$, we can calculate the probability of obtaining N counts given the background, B, for each event (the "p-value") $prob(\geq N) = \sum_{i=N}^{\infty} \frac{B^i \exp(-B)}{i!} = 1 - \frac{\Gamma(N, B)}{\Gamma(N)}$ $p_{thresh} \, cutoff$ Burst duration 0.2s $H_{vbh}(p)$ requency Model • Calculate *H_{model}*, defined as: Data Background PRELIMINARY $H_{model}(p) = H'_{bkg}(p) + H'_{bkg}(p)$ PBH distribution scaled to search time and burst rate 10-1 Excluded from Background distribution scaled to limit calculation the time of the searched data 10^{-2} 10^{-15} 10^{-14} 10^{-13} 10^{-12} 10^{-11} 10^{-10} 10-9 10⁻⁶ p-value

 Above our passing threshold (p_{thresh} cutoff), we have a fiducial region in which we can verify independently of the analysis that our background and data are statistically equivalent

Calculating Upper Limits

For each value of D (the PBH burst duration):

1. Calculate the background Poisson log-likelihood

 $\ln \mathcal{L}_0 = \sum_{p} [H_{data}(p) \ln (H'_{bkg}(p)) - H'_{bkg}(p)]$ Observed "bursts" from Background distribution **GRB** transient search

scaled to the time of the searched data

2. Calculate the model Poisson log-likelihood

$$\ln \mathcal{L}_1 = \sum_{p} \left[\frac{H_{data}(p) \ln(H_{model}(p)) - H_{model}(p)}{\text{Observed "bursts" from}} \right]$$

background distribution (both scaled)

10⁻¹³ 10⁻¹² 10⁻¹¹

 10^{-10}

Model

 10^{-15}

 10^{-14}

 10^{-16}

Burst duration 0.2s

*factorial term neglected as it will cancel out later

GRB transient search

Calculating Upper Limits

For each value of D (the PBH burst duration):

3. Define a test statistic (from Wilks' Theorem), and calculate for the rate of PBH bursts, R, being evaluated

$$T_{\uparrow}S = 2\left[\ln \mathcal{L}_1 - \ln \mathcal{L}_0\right]$$

- Find the largest possible value of TS: TS_{max}
- 4. Iterating over R, the burst rate that satisfies the TS value corresponding to a 99% confidence level is the upper limit

$$TS_{99} = TS_{max} - 5.41$$

PBH Burst Rate Density Upper Limits

Experiment	Burst Rate Upper Limit	Optimal Search Duration	Reference
Milagro	36000 pc ⁻³ yr ¹	1s	Abdo et al., 2014
VERITAS	22200 pc ⁻³ yr ¹	30s	Archambault et al., 2017
H.E.S.S.	14000 pc ⁻³ yr ⁻¹	30s	Glicenstein et al., 2013
Fermi-LAT	7200 pc ⁻³ yr ⁻¹	$1.26 imes 10^8 extsf{ s}$	Ackermann et al., 2018
HAWC 3 yr.	3300 рс ^{-з} уг ⁻¹	0.2s	This Work

Summary

- Using 3 years of HAWC data, we have placed an upper limit on the local burst rate density of PBHs as $\dot{\rho}>3300~pc^{-3}yr^{-1}$
 - This is the most constraining limit to date

Future Work

- Immediate Future:
 - Statistical uncertainties
 - Systematics
- Extended Outlook:
 - Independent PBH study

References

[1] A. U. Abeysekara et al., Observation of the Crab Nebula with the HAWC GammaRay Observatory, Astrophys. J. 843 (2017), no. 1 39, [arXiv:1701.01778]

[2] J. R. Wood, An All-Sky Search for Bursts of Very High Energy Gamma Rays with HAWC, Ph.D. thesis, University of Maryland, College Park, 2016

[3] T. N. Ukwatta, D. R. Stump, J. T. Linnemann, J. H. MacGibbon, S. S. Marinelli, T. Yapici et al., Primordial Black Holes: Observational Characteristics of The Final Evaporation, Astropart. Phys. 80 (2016) 90 [1510.04372]

[4] A. A. Abdo et al., Milagro Limits and HAWC Sensitivity for the Rate-Density of Evaporating Primordial Black Holes, Astropart. Phys. 64 (2015) 4 [1407.1686]

[5] E. T. Linton and et al., A new search for primordial black hole evaporations using the Whipple gamma-ray telescope, Journal of Cosmology and Astroparticle Physics 01 (2006) 013

References

[6] D. E. Alexandreas and et al., New limit on the rate-density of evaporating black holes, Physical Review Letters 71 (1993) 2524

[7] Tibet Air Shower Array collaboration, Search for 10 TeV Gamma Bursts from Evaporating Primordial Black Holes with the Tibet Air Shower Array, in Proceedings, 24th International Cosmic Ray Conference (ICRC1995): Rome, Italy, August 28 - September 8, 1995, p. 112, http://adsabs.harvard.edu/full/1995ICRC....2..112A

[8] VERITAS collaboration, Search for Primordial Black Hole Evaporation with VERITAS, PoS ICRC2017 (2017) 691 [1709.00307]

[9] H.E.S.S. collaboration, Limits on Primordial Black Hole evaporation with the H.E.S.S. array of Cherenkov telescopes, in Proceedings, 33rd International Cosmic Ray Conference (ICRC2013): Rio de Janeiro, Brazil, July 2-9, 2013, p. 0930, 2013, 1307.4898

[10] Fermi-LAT collaboration, Search for Gamma-Ray Emission from Local Primordial Black Holes with the Fermi Large Area Telescope, Astrophys. J. 857 (2018) 49 [1802.00100]

References

[11] VERITAS collaboration, Constraining the evaporation rate of primordial black holes using archival data from VERITAS, in Proceedings, 36th International Cosmic Ray Conference (ICRC2019): Madison, WI, USA, July 24 - August 1, 2019, p. 719, https://pos.sissa.it/358/719/pdf

[12] H.E.S.S. collaboration, Search for Primordial Black Hole evaporations with
H.E.S.S, in Proceedings, 36th International Cosmic Ray Conference (ICRC2019):
Madison, WI, USA, July 24 - August 1, 2019, p. 804, https://pos.sissa.it/358/804/pdf

[13] IceCube collaboration, Neutrinos from Primordial Black Hole Evaporation, in Proceedings, 36th International Cosmic Ray Conference (ICRC2019): Madison, WI, USA, July 24 - August 1, 2019, p. 863, https://pos.sissa.it/358/863/pdf

BACKUP

PBH Burst Rate Density Upper Limits

Building a Model – Other Durations to Search

Data exclusion region based on where our data and Monte Carlo background were in agreement; chosen to be BG = 10 counts for all three durations for consistency.

B3

PBHs vs. GRBs

- Optimize data from a previous HAWC Gamma-Ray Burst (GRB) analysis
- PBHs we're looking for are more analogous to short GRBs
- PBHs have a harder spectral index than GRBs
 - This means it is more plausible that HAWC would see a PBH burst than a GRB

Radial Distance and Significance

• Confirmed that past 0.5 pc, even if located at HAWC's zenith, the signal from a potential PBH was not significant enough to contribute to this limit

