Setting Upper Limits on the Local Burst Rate Density of Primordial Black Holes Using HAWC

Kristi L. Engel

Alison Peisker, Pat Harding, Joshua Wood, Israel Martinez-Castellanos, Kirsten Tollefson, Andrea Albert, and the HAWC Collaboration
What is a PBH?

- Primordial Black Holes (PBHs) are believed to have been created by density fluctuations in the early Universe
 - PBHs in certain mass ranges proposed as dark matter candidates

- Like all black holes, PBHs undergo Hawking Radiation

- PBHs could be as large as supermassive black holes or as small as the Planck scale
 - PBHs with an initial mass of \(\sim 5 \times 10^{14} \) g are expected to be expiring today, emitting a burst of gamma rays in HAWC’s energy range (GeV—TeV) during the final seconds of their lives
The HAWC Observatory

• HAWC’s wide field-of-view, day & night, eliminates the statistical restrictions other detectors may experience

• Previous approaches using Milagro (and early HAWC) data were not optimized for PBHs
HAWC Blind Transient Search

All-sky transient search
• 2.1° x 2.1° bins in right ascension and declination
• Sliding time windows of length 0.2, 1, and 10 seconds
• Stores the probability value (p-value) for all events that pass a reporting threshold

This PBH Analysis
• Designed based on the format of the transient search data
• Uses 3 years of HAWC data
• No significant detection → places an upper limit
PBH Energy Spectrum

\[
\frac{dN_\gamma}{dE_\gamma} \approx 9 \times 10^{35} \left\{ \begin{array}{ll}
\left(\frac{1 \text{GeV}}{T} \right)^{3/2} & \text{for } E_\gamma < T
\\
\left(\frac{1 \text{GeV}}{E_\gamma} \right)^{3/2} & \text{for } E_\gamma \geq T
\end{array} \right.
\]

\[
T \approx \left[4.8 \times 10^{11} \left(\frac{1 \text{sec}}{\tau} \right) \right]^{1/3} \text{GeV}
\]

Adapted from arXiv:1510.04372
Our Analysis

1. Simulate PBH burst source points in HAWC’s FoV
2. Use software to determine expected signal at HAWC from each of these points
3. Combine with “burst” data and background from blind transient search to form a model and calculate log likelihoods
4. Calculate a test statistic and iterate analysis over the burst rate to determine the 99% CL upper limit
PBH Source Point Monte Carlo

1. Generate points uniformly in x, y, and z
2. Throw out points with $r = \sqrt{x^2 + y^2 + z^2} > 0.5$ pc
 - Creates uniform sphere
3. Throw out points with zenith angle $\theta > 50^\circ$

Results in 18% of events in HAWC’s FoV
Estimating Photons from a PBH in HAWC

- The number of expected photons from a PBH can be expressed in terms of the PBH spectrum and the effective area of the detector (convolved using internal HAWC software)

\[
\mu(r, \theta, \tau) = \frac{1}{4\pi r^2} \int_{E_1}^{E_2} dN(\tau) \frac{dN}{dE} A(E, \theta) dE
\]
Building a Model

• Using the expected signal, \(\mu(r, \theta, \tau) \), we can calculate the probability of obtaining \(N \) counts given the background, \(B \), for each event (the “p-value”)

\[
prob(\geq N) = \sum_{i=N}^{\infty} \frac{B^i \exp(-B)}{i!} = 1 - \frac{\Gamma(N, B)}{\Gamma(N)}
\]
Building a Model

- Using the expected signal, $\mu(r, \theta, \tau)$, we can calculate the probability of obtaining N counts given the background, B, for each event (the “p-value”)

$$prob(\geq N) = \sum_{i=N}^{\infty} \frac{B^i \exp(-B)}{i!} = 1 - \frac{\Gamma(N, B)}{\Gamma(N)}$$
Building a Model

• Using the expected signal, $\mu(r, \theta, \tau)$, we can calculate the probability of obtaining N counts given the background, B, for each event (the “p-value”)

$$prob(\geq N) = \sum_{i=N}^{\infty} \frac{B^i \exp(-B)}{i!} = 1 - \frac{\Gamma(N, B)}{\Gamma(N)}$$

$H_{pbh}(p)$

• Calculate H_{model} defined as:

$$H_{model}(p) = H'_{bkg}(p) + H'_{pbh}(p)$$

PBH distribution scaled to search time and burst rate

Background distribution scaled to the time of the searched data
Above our passing threshold (p_{thresh} cutoff), we have a fiducial region in which we can verify independently of the analysis that our background and data are statistically equivalent.
Calculating Upper Limits

For each value of D (the PBH burst duration):

1. Calculate the background Poisson log-likelihood

\[
\ln L_0 = \sum_p [H_{\text{data}}(p) \ln \left(H'_{\text{bkg}}(p) \right) - H'_{\text{bkg}}(p)]
\]

- Observed “bursts” from GRB transient search
- Background distribution scaled to the time of the searched data

*factorial term neglected as it will cancel out later

2. Calculate the model Poisson log-likelihood

\[
\ln L_1 = \sum_p [H_{\text{data}}(p) \ln (H_{\text{model}}(p)) - H_{\text{model}}(p)]
\]

- Observed “bursts” from GRB transient search
- PBH distribution + background distribution (both scaled)

PRELIMINARY
Calculating Upper Limits

For each value of D (the PBH burst duration):

3. Define a test statistic (from Wilks’ Theorem), and calculate for the rate of PBH bursts, R, being evaluated

\[TS = 2 \left[\ln \mathcal{L}_1 - \ln \mathcal{L}_0 \right] \]

Find the largest possible value of TS: \(TS_{max} \)

4. Iterating over R, the burst rate that satisfies the TS value corresponding to a 99\% confidence level is the upper limit

\[TS_{99} = TS_{max} - 5.41 \]
PBH Burst Rate Density Upper Limits

- CYGNUS Limit, Alexandreas (1993)
- Tibet Air Shower Array Limit, Amenomori (1995)
- VERITAS Limit, Archambault (2017)
- HESS Limit, Glicenstein (2013)
- Fermi LAT Limit, Ackermann (2018)
- Milagro Limit, Abdo (2014)
- IceCube Limit, ICRC (2019)
- HESS Limit 95% CL, ICRC (2019)
- VERITAS Limit, ICRC (2019)
- HAWC 3 Year Limit

Burst Rate Density (pc$^{-3}$ yr$^{-1}$)

Burst Duration (sec)
Results

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Burst Rate Upper Limit</th>
<th>Optimal Search Duration</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milagro</td>
<td>36000 pc⁻³ yr⁻¹</td>
<td>1s</td>
<td>Abdo et al., 2014</td>
</tr>
<tr>
<td>VERITAS</td>
<td>22200 pc⁻³ yr⁻¹</td>
<td>30s</td>
<td>Archambault et al., 2017</td>
</tr>
<tr>
<td>H.E.S.S.</td>
<td>14000 pc⁻³ yr⁻¹</td>
<td>30s</td>
<td>Glicenstein et al., 2013</td>
</tr>
<tr>
<td>Fermi-LAT</td>
<td>7200 pc⁻³ yr⁻¹</td>
<td>1.26 × 10⁸ s</td>
<td>Ackermann et al., 2018</td>
</tr>
<tr>
<td>HAWC 3 yr.</td>
<td>3300 pc⁻³ yr⁻¹</td>
<td>0.2s</td>
<td>This Work</td>
</tr>
</tbody>
</table>
Summary

• Using 3 years of HAWC data, we have placed an upper limit on the local burst rate density of PBHs as $\dot{\rho} > 3300 \, pc^{-3} yr^{-1}$
 • This is the most constraining limit to date

Future Work

• Immediate Future:
 • Statistical uncertainties
 • Systematics

• Extended Outlook:
 • Independent PBH study
References

References

References

Dark Matter Fraction w.r.t. PBHs

\[\Omega_{\text{PBH}} / \Omega_{\text{DM}} \]

\[M_{\text{PBH}} [M_\odot] \]

- 10^{-15}
- 10^{-10}
- 10^{-5}
- 10^0

\[M_{\text{PBH}} [g] \]

- 10^{15}
- 10^{20}
- 10^{25}
- 10^{30}
- 10^{35}

- Femto
- KepI
- EROS/MACHO
- CMB

HSC M31 constraint (95% limit)

arXiv:1701.02151
PBH Burst Rate Density Upper Limits

- CYGNUS Limit, Alexandreas (1993)
- Tibet Air Shower Array Limit, Amenomori (1995)
- VERITAS Limit, Archambault (2017)
- HESS Limit, Glicenstein (2013)
- Fermi LAT Limit, Ackermann (2018)
- Milagro Limit, Abdo (2014)

- HAWC 1 Year Predicted Limit, Abdo (2014)
- HAWC 2 Year Predicted Limit, Abdo (2014)
- HAWC 5 Year Predicted Limit, Abdo (2014)
- HAWC 3 Year Limit
- HAWC 3 Year Expected Limit

Burst Rate Density $\left(\text{pc}^{-3} \text{yr}^{-1} \right)$ vs. Burst Duration (sec)
Data exclusion region based on where our data and Monte Carlo background were in agreement; chosen to be BG = 10 counts for all three durations for consistency.
PBHs vs. GRBs

- Optimize data from a previous HAWC Gamma-Ray Burst (GRB) analysis
- PBHs we’re looking for are more analogous to short GRBs
- PBHs have a harder spectral index than GRBs
 - This means it is more plausible that HAWC would see a PBH burst than a GRB

arXiv:1510.04372

Radial Distance and Significance

- Confirmed that past 0.5 pc, even if located at HAWC’s zenith, the signal from a potential PBH was not significant enough to contribute to this limit.