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What is a PBH?
• Primordial Black Holes (PBHs) are believed to have been created by 

density fluctuations in the early Universe
• PBHs in certain mass ranges proposed as dark matter candidates

• Like all black holes, PBHs undergo Hawking Radiation

• PBHs could be as large as supermassive black holes or as small as the 
Planck scale
• PBHs with an initial mass of ~5×10&' g are expected to be expiring today, 

emitting a burst of gamma rays in HAWC’s energy range (GeV—TeV) during 
the final seconds of their lives
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The HAWC
Observatory
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• HAWC’s wide field-of-
view, day & night, 
eliminates the 
statistical restrictions 
other detectors may 
experience

• Previous approaches 
using Milagro (and 
early HAWC) data 
were not optimized 
for PBHs



HAWC Blind Transient Search

All-sky transient search 
• 2.1° x 2.1° bins in right ascension and declination
• Sliding time windows of length 0.2, 1, and 10 seconds
• Stores the probability value (p-value) for all events that pass a reporting threshold

This PBH Analysis
• Designed based on the format of the transient search data
• Uses 3 years of HAWC data
• No significant detection à places an upper limit
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PBH Energy Spectrum

Adapted from arXiv:1510.04372 
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Our Analysis

1. Simulate PBH burst source points in HAWC’s FoV
2. Use software to determine expected signal at HAWC from each of 

these points
3. Combine with “burst” data and background from blind transient 

search to form a model and calculate log likelihoods
4. Calculate a test statistic and iterate analysis over the burst rate to 

determine the 99% CL upper limit
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PBH Source Point Monte Carlo

1. Generate points uniformly in x, y, and z
2. Throw out points with 𝑟 = 𝑥- + 𝑦- + 𝑧- > 0.5 pc
• Creates uniform sphere

3. Throw out points with zenith angle 𝜃 > 50°
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Estimating Photons from a PBH in HAWC
• The number of expected photons from a PBH can be expressed in 

terms of the PBH spectrum and the effective area of the detector 
(convolved using internal HAWC software)

arXiv:1407.1686 7



Building a Model

• Using the expected signal, 𝜇(𝑟, 𝜃, 𝜏), we can calculate the probability 
of obtaining N counts given the background, B, for each event (the 
“p-value”)

pthresh cutoff 
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Building a Model

• Using the expected signal, 𝜇(𝑟, 𝜃, 𝜏), we can calculate the probability 
of obtaining N counts given the background, B, for each event (the 
“p-value”)

• Calculate Hmodel, defined as:

Background distribution scaled to 
the time of the searched data 

PBH distribution scaled to 
search time and burst rate

pthresh cutoff 

𝐻>?@AB 𝑝 = 𝐻′;DE 𝑝 + 𝐻′:;< 𝑝

𝐻:;< 𝑝
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Fiducial Region

• Above our passing threshold (pthresh cutoff), we have a fiducial region 
in which we can verify independently of the analysis that our 
background and data are statistically equivalent

pthresh cutoff 
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Calculating Upper Limits

1. Calculate the background Poisson log-likelihood

Background distribution 
scaled to the time of the 
searched data 

*factorial term neglected as it will cancel out later

Observed “bursts” from 
GRB transient search

For each value of D (the PBH burst duration):

Observed “bursts” from 
GRB transient search

[𝐻@GHG 𝑝 ln 𝐻′;DE 𝑝 − 𝐻L;DE(𝑝)]

[𝐻@GHG 𝑝 ln 𝐻>?@AB 𝑝 − 𝐻>?@AB(𝑝)]
PBH distribution + 
background 
distribution (both 
scaled)
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2. Calculate the model Poisson log-likelihood



Calculating Upper Limits

For each value of D (the PBH burst duration):

3. Define a test statistic (from Wilks’ Theorem), and calculate for 
the rate of PBH bursts, R, being evaluated

4. Iterating over R, the burst rate that satisfies the TS value 
corresponding to a 99% confidence level is the upper limit

Find the largest possible value of TS: 
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Results

Experiment Burst Rate Upper Limit Optimal Search Duration Reference

Milagro 36000 pc-3 yr-1 1s Abdo et al., 2014

VERITAS 22200 pc-3 yr-1 30s Archambault et al., 2017

H.E.S.S. 14000 pc-3 yr-1 30s Glicenstein et al., 2013

Fermi-LAT 7200 pc-3 yr-1 1.26 × 10P s Ackermann et al., 2018

HAWC 3 yr. 3300 pc-3 yr-1 0.2s This Work
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Summary

• Immediate Future:
• Statistical uncertainties
• Systematics

• Extended Outlook:
• Independent PBH study 

Future Work

• Using 3 years of HAWC data, we have placed an upper limit on the
local burst rate density of PBHs as 𝜌 > 3300 𝑝𝑐TU𝑦𝑟T&
• This is the most constraining limit to date

.
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Dark Matter Fraction w.r.t. PBHs
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Building a Model –
Other Durations to Search

B3

Data exclusion region based on where our data and Monte Carlo 
background were in agreement; chosen to be BG = 10 counts for all three 
durations for consistency.



PBHs vs. GRBs
• Optimize data from a previous HAWC Gamma-Ray Burst (GRB) analysis
• PBHs we’re looking for are more analogous to short GRBs
• PBHs have a harder spectral index than GRBs
• This means it is more plausible that HAWC would see a PBH burst than a GRB

arXiv:1510.04372 arXiv:astro-ph/9903205 
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Radial Distance and Significance

B5

• Confirmed that past 0.5 pc, even if located at HAWC’s 
zenith, the signal from a potential PBH was not significant 
enough to contribute to this limit


