EAL INCOME

Riccardo Rando University of Padova &

INFN Padova riccardo.rando@pd.infn.it

Gamma Ray Direct Observation Rapporteur Talk

ICRC 2019 Madison WI 2019/08/01

Boring outline

Mostly a list of sources as a function of z:

- Solar
- Galactic sources
- Extragalactic sources

Plus

• Instrument updates, future proposals

Contents:

- No plenary talks
- No posters (usually are referred in the contributions)

A guiding thread...

My personal view on the whole situation

A set of excellent instruments:

- Impressively precise measurements
- More and more extensive coverage of the sky
- Several results in tension with current models (DSA, SSC, ...)

On the other hand:

- Often very low statistics, esp. > 1 GeV (growing linearly with time)
- Many tantalizing hints of further features, discrepancies...
- The **need for MWL** is paramount, "blind" regions in the spectrum are so frustrating

Solar

Hadronic gamma rays from the Sun

Hadronic CRs → Sun limb Effect of solar modulation at ~GeV What happens at 100's GeV? Time dependent? (6 ph >100 GeV at Smin 2009, 1 at Smin 2018) Nothing with HAWK (but see CRI13C!) Some morphology?

R. Rando - Direct Gamma Rays - ICRC 2019

Galactic sources

Halo around Geminga

HAWK: HE halo around Geminga, Monogem Fermi-LAT: detected for Geminga, constrains local e+ flux Max 10% at 800 GeV (Geminga), max 3% (Monogem) Cumulative PWN emission: still a viable explanation of e+ excess Note: Geminga template including proper motion favored at 4σ First gamma ray detection of a source moving!

Manconi GAD4B PoS(ICRC2019)580

R. Rando - Direct Gamma Rays - ICRC 2019

Largest known PWN

HESS J1825-137 Analysis 1 GeV – 1 TeV (LAT+HESS) 3-10 GeV Size decreases with energy, centroid moves -12°00'-- 8 10-30 Ge\ Apparent motion too big Much older that 21 kyr? 30-100 GeV Composite object? -13°00'-00-1000 Ge (J2000) Source Extension 100 -14°00'-Dec. -15°00'- 10^{-1} **Principe GAD2E** PoS(ICRC2019)595 Multi-zone Model $\beta = [0.55.0.72]$ -16°00'-Fermi-LAT (2D Gaus) Fermi-LAT (radial profiles) 18h30m 25m 20m H.E.S.S. (2019) 10^{-1} 10-2 100 R.A. (J2000) 10^{1} Energy (TeV)

Eta Carinae

"Just" stars, but L~4 \cdot 10⁶ L_o, excellent laboratorv (lots of CRs. abundant thermal photons)

HESS SNRs with Fermi-LAT

Three candidate shell SNRs, detected as extended in 4FGL Detailed study of morphology, SED

• J1534: HESS map, additional source (PSR) discovered by SED

De Palma GAD2A Green GAD2B PoS(ICRC2019)560 PoS(ICRC2019)564

10/34

Galactic Longitude

Detailed study of morphology, SED

- J1912: unassociated TeV source, no radio, X, PSR in the region (wrong distance)
- MAGIC morphology: ring
- LAT: Gaussian
- Joint SED: soft, slightly outside DSA, too old (130 Myr), spectral model in tension with radio, hadronic m. also not good \rightarrow cries for additional MWL observations

HESS Pevatron candidate

Complex structure: 2 SNRs apparently connected by a bridge, very close (~0.25°)

J1640: first detection of extension in LAT data, hard leptonic spectrum

IN, MAHUU - DHELL UAIIIIIA MAYS - IUNU 2013

Declination (deg)

Orion-Eridanus superbubble w/ LAT

Compare with Cygnus:

- Closer (from 150 pc)
- 62 stars $\geq 8M_{\odot}$
- 12 SN over 12 Myr

No hardening of y-ray emissivity spectrum Uniform emissivity

S

 $\frac{dq_{HI}}{dE}[MeV \ S^{-1}]$

 E^2

10-24

10-25

R. Rando - Direct Gamr

Modeling interstellar emission

Time-dependent, discrete sources

R. Rando - Direct Gamma Rays - ICRC 2019

Extragalactic sources

M31

Details of the modeling

Removing a spur structure, excess remains

Model dependency

DM search: DAMPE

Diffuse regions

Galaxy clusters

TS values for 16 GCIs

Search for lines:

Li GAD3A PoS(ICRC2019)576

Blazars: relativistic reconnection

Blazars: more abundant sources of extragalatic gamma rays

Variability on timescales from minutes to weeks Many additional relations to be modeled

- ratio ~1 of SC and IC peaks
- correlations between LAT and X,UV,... PIC simulations

Plasmoids are efficiently accelerated Collisions, illumination, can produce

- variability at all scales
- Illumination: SC/IC ratio ~1

n/n_0 30 3 0 10 0.1 (a) ct/L=0.25 Ľ 0.0 -0. 0.1 (b) ct/L=0.5 Ľ 0.0 -0.10.1 (c) ct/L=0.75 1 0.0 -0. 0.1 (d) ct/L=1 y/L 0.0 -0. 0.1 (e) ct/L=1.5 Ľ 0.0 arXiv:1906.03297 0.2 0.4 0.6 0.8 1.0 0.0 x/L

Christie GAD1C

PoS(ICRC2019)559

Relativistic reconnection

R. Rando - Direct Gamma Rays - ICRC 2019

AGN: periodicity

2276 AGNs from LAT dataset, >1 GeV, light curves with monthly binning Automated analysis, require a 3σ positive in 3 independent tests: 23 candidates (prev. 5)

R. Rando - Direct Gamma Rays - ICRC 2019

LAT GRBs: FLGC2

Second catalog, 186 GRBs (10% short, 34 with redshift) Improved automated analysis pipeline Paper (Ajello+, APJ 878, 52), FITS files available Many many plots

GRBs outside

High E photons

_

<5% of GRBs have E > 50 GeV

Sharp drop @5 GeV (obs .frame)

95 GeV @243 s

34 GeV @34 ks

77 GeV @19s

Record holder: GRB 130427A

- HE photons often arrive **after** the LE emission is over
 - BUT: Highest energies can be produced either
 very quickly or very late → challenge for the models!

Recovering additional photons

R. Rando - Direct Gamma Rays - ICRC 2019

CAL-Only GRB photons

Dedicated analysis to give good PSF and BKG rejection under hard circumstances 50% more statistics (50-300 GeV range), ~30x worse PSF (~2°) Starting sample 24 GRBs \rightarrow 4 new events >10 GeV GRB090926A

Observed energy	50 GeV
(GRB-frame energy)	(157 GeV)
Arrival time	T ₀ +424 s
Angular sep.	0.8°
(cf. PSF68%)	(1.7°)
BKG prob.	~0.02%

At odds with adiabatic evolution of external shocked medium:

- Photon energy is ~4 times higher than the synchrotron limit
- Inverse-Compton component?
- Energy injection from central engine at T>400s?

0.49%

170114Ap2

N/A

N/A

41%

74%

17

N/A

CALET

MeV observatories: AMEGO

Emulsion telescope: GRAINE

	Fermi LAT	GRAINE
Angular resolution @100MeV	6.0deg (105mrad) —	1.0deg (17mrad)
@1GeV	0.90deg (16mrad) ×1	0.1deg (1.7mrad)
Energy range	20MeV - 300GeV	10MeV - 100GeV
Polarization sensitivity		Yes

BurstCUBE

6U cubesat (6 liters) Covers 50 keV – 1 MeV Expected ~20 SGRB/y Deployment ~2021 Smith GAD3E PoS(ICRC2019)604

R. Rando - Direct Gamma Rays - ICRC 2019

Conclusion

As said in the beginning...

A set of excellent instruments:

- Impressively precise measurements
- · More and more extensive coverage of the sky
- Several results in tension with current models (DSA, SSC, ...)

On the other hand:

- Often very **low statistics**, esp. > 1 GeV (growing linearly with time)
- Many tantalizing hints of further features, discrepancies...
- The **need for MWL** is paramount, "blind" regions in the spectrum are so frustrating

Thank you for your attention!