Reverse Direct Detection:

Cosmic Rays Scattering With Light Dark Matter

Kenny, Chun Yu Ng (吳震宇) Weizmann Institute of Science

Soon:

GRAPPA, U of Amsterdam

Reverse Direct Detection:

Cosmic Rays Scattering With Light Dark Matter

- arXiv:1810.07705
- Christopher Cappiello (OSU), KCYN, John Beacom (OSU)

- Related works:
 - Cappiello, Beacom (arxiv: 1906.11283)
 - + others

Finding Dark Matter

Direct Detection

Direct Detection

Next generation experiments will reach the neutrino floor

US Cosmic Visions: New Ideas in Dark Matter 2017 : Community Report [1707.04591]

Direct Detection

Detector Threshold ∼ keV

Energy transfer $\sim m_\chi \, v^2$ $v \sim 10^{-3} {\rm c}$

New detection ideas needed for light DM

Direct Detection Full landscape

GeV Kenny C.Y. NG, ICRC 2019

Dark Matter

29th July 2019

Direct Detection Full landscape

Cross sectior

Large Cross Section Low Mass

- -> Astrophysical Probes
- CMB/structure formation
- Cosmic rays

Surface experiments
Space experiments

Detector shielding

New detection ideas

- Dirac Materials
- Polar Materials
- Super-Fluid He
- Super-Cond. Al
- Color Center/defects
- Graphene
-

Dark Matter Mass

Neutrino floor Imminent

GeV

29th July 2019 Kenny C.Y. NG, ICRC 2019

Reverse Direct Detection

Direct detection

$$-\chi + N \rightarrow \chi + N'$$

Reverse Direct Detection

$$-N + \chi \rightarrow N' + \chi$$

Cosmic Ray Scattering with DM

Beam: Cosmic Rays

Cappiello, *KCYN*, Beacom 1810.07705

- Target: MW DM halo (path length ~ Mpc)
- Effect: excessive energy loss to the cosmic rays
- Light DM: More target! $n_{\chi} = \rho_{\chi}/m_{\chi}$

Leaky Box model

$$\frac{N(E)}{T_{esc}(E)} + \frac{d}{dE} \left(\frac{E N(E)}{T_{loss}(E)} \right) = Q(E)$$

- Cross section:
 - energy independent
- Tesc:
 - power law
 - Norm. set by CR lifetime
- Injection spectrum:
 - Double broken power law
 - Norm. ~ supernova energy budget

Proton scattering

1keV $\sim 10^{-27} \text{cm}^2$

$$\frac{N(E)}{T_{esc}(E)} + \frac{d}{dE} \left(\frac{E \ N(E)}{T_{loss}(E)} \right) = Q(E)$$

- Spectrum distortion
- Energy budget (conservative)

- Electrons
 - Add Syn+IC energy loss

Cappiello, *KCYN*, Beacom 1810.07705

Cosmic Ray Scattering with DM

Proton Scattering

10^{-24} 10^{-25} Cosmo ح الم This Work 10⁻²⁸ This Work (Fixed CR Parameters) 10^{-29} $10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1}$ m_{χ} [GeV]

Electron Scattering

Cappiello, *KCYN*, Beacom 1810.07705

Dark Matter up-scattering

- Relativistic DM -> high recoil energy
 - kton neutrino detectors!
- Detection rate -> (cross section)²

- Bringmann, Pospelov 1810.10543
- Ema, Sala, Sato 1811.00520
- Cappiello Beacom 1906.11283

14

Dark Matter up-scattering

Cappiello, Beacom 1906.11283

15

Conclusion

 Light dark matter has become increasingly popular

 Astrophysical and cosmological probes are complementary to (future) direct detection experiments

 Low-mass high cross section window closed

Backup

Electron scattering

