Subparsec and parsec VHE emission

from the core of LLAGNs

ICRC2019

Madison, WI, USA

- Juan Carlos Rodríguez-Ramírez
- Elisabete M. de Gouveia Dal Pino
- Rafael Alves Batista

Instituto de Astronomia Geofísica e Ciências Atmosféricas, Universidade de São Paulo (IAG-USP)

Overview

Introduction

Turbulent magnetic reconnection in BH accretion flows

CR emission signatures of Sgr A* and Cen A

Conclusions

Introduction: LLAGNs

Sagittarius A*(Sgr A*):LLAGN at the GC

X-ray luminosity <10⁴² erg s⁻¹

- Centaurus A (Cen A):
 - The closest active radio galaxy at 3.8 Mpc

• Associated with VHE γ-ray emission.

SgrA*

Diffuse VHE emission correlated to the MC complex

- Suggestive of hadronic emission origin.
- SMBH is a strong PeVatron candidate

H.E.S.S Collab. (2016), Nature.

Cen A

- SED hardens at ~ 3 GeV
- No significant variability detected at GeV - TeV
- Extended VHE emission aligned with kpc jets. (see GAI5e talk by M. de Naurois HESS Collab.)

H.E.S.S. Collab. (2018)

Cen A

- SED hardens at ~ 3 GeV
- No significant variability detected at GeV - TeV
- Extended VHE emission aligned with kpc jets. (see GAI5e talk by M. de Naurois HESS Collab.)

This talk

- Can we use current IACTs observations to investigate CR acceleration in the nuclear region of LLAGNs?
- What is the acceleration mechanism?
- How much does the emission of these CRs contribute to the current observed SEDs?

CR acceleration by turbulent magnetic reconnection

 In the coronal region of thin and cold BH accretion flows

de Gouveia dal Pino & Lazarian (2005)

Kowal, de Gouveia Dal Pino & Lazarian (2011,12)

Kadowaki, de Gouveia Dal Pino & Singh (2015)

 In thick and hot magnetised accretion flows

Singh, de Gouveia Dal Pino & Kadowaki (2015)

Kimura, Tomida & Murase (2019)

CR acceleration by turbulent magnetic reconnection

Fast magnetic reconnection current-sheet-search algorithm

Kadowaki, de Gouveia Dal Pino & Stone (2018)

Kadowaki, de Gouveia Dal Pino & Medina-Torrejon (2019)

Also in reconnenction induced by kink stability in magnetised jets

de Gouveia Dal Pino et al. (2019)

Athena++ code

We combine three numerical

techniques:

GRMHD:

Axi-symmetric
HARM code
Gammie et al. (2003)

Gas density and

magnetic field

Radiative Transfer:

GRMONTY code
Dolence et al. (2009)

Background
Photon field:

leptonic synchrotron & IC

Propagation of CR
Accelerated by
Reconnection:

CRPropa3 code
Alves Batista
et al. (2016)

To probe hadronic
Emission/absorption
(TeVs)

We tested this approach to calculate potential VHE emission from the RIAF of SqrA*:

Rodríguez-Ramírez et al. (2019) ApJ 843, 136

We combine three numerical techniques:

$$\lambda_{pp}^{-1}(E_p, R_i, \theta_j) = \sigma_{pp}(E_p) n_i(R_i, \theta_j),$$

$$\lambda_{p\gamma}^{-1}(E_p, R_i, \theta_j) = \frac{m_p^2 c^4}{2E_p^2} \int_0^\infty d\epsilon \times \frac{n_{ph}(\epsilon, R_i, \theta_j)}{\epsilon^2} \int_{145MeV}^{\frac{2E_p \epsilon}{m_p c^2}} d\epsilon' \epsilon' \sigma_{p\gamma}(\epsilon'),$$

We combine three numerical

techniques:

$$\lambda_{\gamma\gamma}^{-1}(E_{\gamma}, R_{i}, \theta_{j}) = \frac{1}{8E_{\gamma}^{2}} \int_{2m_{e}^{2}c^{4}}^{4E_{\gamma}\epsilon_{max}} ds \times s\sigma_{\gamma\gamma}(s) \int_{0}^{\infty} d\epsilon \frac{n_{ph}(\epsilon, R_{i}, \theta_{j})}{\epsilon^{2}},$$

$$\lambda_{IC}^{-1}(E_e, R_i, \theta_j) = \frac{1}{8\beta E_e^2} \int_{m_e^2 c^4}^{m_e^2 c^4 + E_e \epsilon_{max}(1+\beta)} ds$$
$$\times \sigma_{IC}(s)(s - m_e^2 c^4) \int_0^\infty d\epsilon \frac{n_{ph}(\epsilon, R_i, \theta_j)}{\epsilon^2}.$$

We combine three numerical

techniques:

We tested this approach to calculate potential VHE emission from the RIAF of SgrA*:

Rodríguez-Ramírez et al. (2019) ApJ 843, 136

CR injection parametrised as

$$\frac{dN_{CR}}{d\epsilon} \propto \epsilon^{-\kappa} \exp\{-\epsilon/\epsilon_{cut}\}$$

$$W_{rec} = 1.52 \times 10^{42} f \left(\frac{\dot{M}_{acc}}{M_{\odot} \text{yr}^{-1}}\right) \left(\frac{T_p}{T_e}\right) \text{erg s}^{-1} \frac{\widehat{T}_{acc}}{\widehat{T}_{acc}} = 1.52 \times 10^{42} f \left(\frac{\dot{M}_{acc}}{M_{\odot} \text{yr}^{-1}}\right) \left(\frac{T_p}{T_e}\right) = 1.52 \times 10^{42} f \left(\frac{\dot{M}_{acc}}{M_{\odot} \text{yr}^{-1}}\right) \left(\frac{\dot{M}_{acc}}{M_{\odot} \text{yr}^{-1}}\right) \left(\frac{\dot{M}_{acc}}{M_{\odot} \text{yr}^{-1}}\right) = 1.52 \times 10^{42} f \left(\frac{\dot{M}_{acc}}{M_{\odot} \text{yr}^{-1}}\right) \left(\frac{\dot{M}_{acc}}{M_{\odot} \text{yr}^$$

Rodríguez-Ramírez et al. (2019) ApJ 843, 136

CR emission regions in the core of Cen A

(i) CRs emitting in the acceleration region

(ii) CRs that escape and emit due to interactions with the ISM at pc scales

40

60

60

40

20

 \sim 200×400 pc

$$n = 10^{3-5} \text{ cm}^{-3}$$

Israel et al. (2017)

CND toy model:

$$B_{\phi} \propto n$$

SED models

(i) RIAF

$$\dot{M}_{acc} = 1.3 \times 10^{-3} \ {\rm M}_{\odot} \ {\rm yr}^{-1}$$

$$W_{esc} = 2 \times 10^{40} \text{ erg s}^{-1}$$

(ii) CND

Model	$W_{esc} \times 10^{40} [{\rm erg \ s^{-1}}]$	p	ε_{cut} [PeV]
m_1	1.4	1.5	5
m_2	1.4	1.5	0.05
m_3	10	2.5	0.1

Neutrino emission

Conclusions

Assuming CR acceleration consistent with magnetic reconnection power, we derived CR emission signatures from the nuclear region of Sgr A* and Cen A finding that:

- $^{>}$ CR emission produced within the RIAF of SgrA* is potentially detectable with CTA for BH mass accretion rates $\gtrsim 10^{-7}~{\rm M}_{\odot}~{\rm yr}^{-1}$
- > γ-ray produced within the BH accretion flow of Cen A is suppressed for E>300 GeV by the soft radiation of accretion flow.
- The emission of CR interacting within the CND of Cen A probably contributes to the current H.E.S.S. SED for E > 3 TeV.