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Long Duration Gamma Ray Flares

Multi-hour >100 MeV
v-ray emission.
Spectrum often >1
GeV.

Starts many minutes
after the HXR and p-
waves.

Continues while all
other flare-related
emissions have
ceased.

No detectable
electronic
component.
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Two Competing Scenarios

Accelerated at
shock, then

Trapped and
continuously
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Unresolved Controversy

Problems with Remote Acceleration

* No robust model for transporting particles
back to Sun.

* Wildly discrepant numbers of particles
estimated in space and at Sun.

« Some events require ~100% of IP particles
to precipitate back to Sun.

* “Flare” spectrum significantly harder than IP
spectrum.

Problems with Local Production

 Maintaining wave field for hours.

e Large loops quite common, but
difficult to visualize.

v Little glowing gas (SXR).

 With no direct indicator of loop
size, difficult to estimate kK from /.



SDO/UV images 3
Full Sun and reduced FoV
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This event is the best yet in terms of
revealing the coronal environment.

GeV Protons




The Model

1.lons from impulsive phase or shock injected
into large (length /) magnetic bipolar
structure.
2.MHD turbulent plasma traps particles (A«l).
3.Particles diffuse to dense atmosphere.
4.lons accelerated by Fermi process to high
energies (>300 MeV)
== Prolonged high energy emission
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* No other losses

e Constant coefficients, but coupled
diffusion in momentum/real space,
.e., TpTy=const.

e Free parameters: length, injection
point, Alfvén speed



The Process
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Doppler Broadened
69 MeV vy

But first, we have see if we are in the

ballpark
* Focus on the exponential decay
(drives the diffusion coefficient),

» Estimate structure dimensions from
new EOVSA imaging data.

Simple model the precipitation of high
energy protons (> 300-MeV) 1t threshold.
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100 MeV vy Photometric Curve
 Smooth exponential decay after 1900 UT, 3 hours
after CME liftoff.

* J x exp —(t/6500 s) +20%

* 95% confidence vy “imaging” centroid location
encompasses all features on the py-wave image
(on right) during this phase.

* Parent proton spectrum softens from
-4.3 to —6.0.
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Event Integrated Image at 3.4 GHz

» Reveals a complete inner region

associated with the lower half of a
reconnection event (beneath a CME).

» Reveals footpoints of a larger loop

with height of 0.4 Ro and length 1.4
Ro.



So how does this stack up?

* The 6500-s decay and / = 1.4 R (Tx = [2/112K) = A\ (= 3k/v) of 200 km (),

e 200 km A implies a k=2/3 integrated wave intensity of 0.7 ergs-cm=3 (Lee,
1983),

* 1 G B field of at loop top =» 68/B of ~10 (X) at top and 0.4 at base (v),
e Acceleration time Ta (= 9k/Va2) requires only Va ~140 km-s-1 (V).

Things to note
» K Is a lower limit, because the spectrum softens, i.e., A will be greater,
- Fewer demands on wave intensity (0B/B),
» |s B truly dipolar? Check against B-field calculation and
» More realistic model including other loss mechanisms, energy dependent K,
VB, and realistic wave dynamics.



