Search for diffuse γ-ray emission from galactic plane with YBJ-HA

Yuhua Yao (Sichuan University/IHEP, China)

29 JULY, 2019

36th INTERNATIONAL COSMIC RAY CONFERENCE
UNIVERSITY OF WISCONSIN-MADISON
MADISON, WISCONSIN, USA
outline

• Diffuse gamma-ray emission
• YBJ-HA (YangBaJing Hybrid Array)
• Data analysis
• Estimation of signal and background
• Result and summary
Diffuse gamma rays

Diffuse galactic gamma-ray

Undetected faint point sources

Extragalactic background
Galactic interstellar γ-rays

1. π^0 decay

2. Bremsstrahlung

3. Inverse Compton

4. Annihilate or decay

For the sduy of:
1. Galactic CRs
2. ISM
3. ISRF
4. DM
115 EDs: plastic scintillator
16 MDs: water Cherenkov
Energy range: TeV to hundred TeV
Location: 4300m a.s.l. Tibet/China
Experiment data:
- Duration: 01/2017-06/2018 (~160 days)
- Number of events: \(\sim 7.6 \times 10^8 \)

Monte Carlo samples:
- Corsika_v74005:
 - CRs:
 - Hadronic model: QGSJET2+GHEISHA
 - Energy range: 1TeV-10PeV
 - Zenith range: 0° – 60°
 - Location: YBJ (4300m)
 - Component: p He Fe CNO MgAlSi
 - Scale model: Giasser/Horandel Model
 - Number of CRs samples: \(\sim 3.5 \times 10^8 \)
- Gamma-rays:
 - Spectrum index: -2.59
 - Number of \(\gamma \)-ray samples: \(\sim 1.5 \times 10^7 \)

Reconstruction:
- Arrival time \(\rightarrow \) Direction
- Detected charge \(\rightarrow \) Energy proxy
- The same procedure are used for both data and monte carlo samples
Inside the array

Energy estimator

zenith < 45°

Normalized Counts [Hz]

\[\log_{10}(\Sigma p/[m^2]) \]

zenith < 45°

Normalized Counts

Zenith [Degree]

Ratio

Muon

N_{\text{Muon}} = 0

Exp

MC-CR\text{~s}

MC-gamma

Data

MC_Gaisser

MC_Horandel

MC_Coore_Soft

MC_Coore_Soft + Po

D_{\text{LHAASO-HMENA}}
Energy estimation

Primary Energy of Gamma

- Median Energy: \(\sim 20 \text{TeV} \)
- Number of selected data samples: \(\sim 1.3 \times 10^6 \)

- Median Energy: \(\sim 50 \text{TeV} \)
- Number of selected data samples: \(\sim 3.0 \times 10^5 \)
Estimation of signal and background

All-distance equi-zenith angle method

\[I = \frac{N_{\text{obs}}}{N_{\text{bkg}}} \]

\[I_{\text{on}}, N_{\text{on}} \]

\[I_{\text{off}}, N_{\text{off}} \]

\[\text{Sign}_{ij} = \frac{I_{ij} - 1}{\Delta I_{ij}} \]

Large-scale CRs anisotropy

Adopted from the talk of Yingying Guo

~15 TeV
Diffuse gamma-ray

Significance Map

Relative Intensity

outer galactic plane: $140^\circ \leq gl < 225^\circ$

inner galactic plane: $20^\circ \leq gl < 105^\circ$

$\pm 3^\circ$

Galactic longitude [degree]
Significance Distribution

All Sky

- **Number of bin**
 - 0
 - 100
 - 200
 - 300
 - 400
 - 500

- **Significance**
 - -6
 - -4
 - -2
 - 0
 - 2
 - 4
 - 6

- **Consistent with Gaussian function**
- **No significant gamma-ray excess**

Inner galactic plane

- **Entries**
 - 135
- **Mean**
 - 0.1324
- **Std Dev**
 - 1.071
- **χ² / ndf**
 - 15.85 / 45
- **Constant**
 - 12.57 ± 1.32
- **Mean**
 - 0.1324 ± 0.0922
- **Sigma**
 - 1.071 ± 0.065

Outer galactic plane

- **Entries**
 - 140
- **Mean**
 - 0.05964
- **Std Dev**
 - 0.8773
- **χ² / ndf**
 - 12.9 / 45
- **Constant**
 - 15.92 ± 1.65
- **Mean**
 - 0.05964 ± 0.07415
- **Sigma**
 - 0.8773 ± 0.0564
90% CL upper limit on flux

When the primary energy is ~50 TeV

Helene, O. NIM. A300 (1991) 132-136
90% CL upper limit

![Graph showing 90% CL upper limit with various data points and labels for different experiments.](image-url)
No significant diffuse γ-ray excess in the galactic plane is observed by YBJ-HA in energy range of several dozens of TeV in the first 160 days.

90% CL upper limits on flux are obtained.

More data are being collected by the YBJ-HA, and LHAASO-KM2A are under-construction.

Thank you for your attention!
backups
Subtraction of anisotropy
Group shot of moon and sun