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A. Bruno

Origin of SEPs

e Two class scenario of SEP acceleration
> Impulsive events: related to flares, short duration, small intensity,
Type lll bursts, 3He e- Fe enriched, ...
- @Gradual events: related to CME-driven shocks, long duration, large
intensity, Type Il bursts, ...

e Recent studies have shown that SEP events are, in general, originated by
a mixture of impulsive and gradual processes, and the event evolution
depends on their relative importance and on the magnetic connection to
Earth
- albeit there is still no consensus about the details of the individual

mechanisms

* While SEPs with energies below few hundred MeV have been extensively
investigated by a number of missions (e.g. ACE, STEREO, WIND), the
characterization of higher-energy SEP fluxes is still affected by large
uncertainties, in part due to the relatively few observations in this range,

> mostly relegated to indirect measurements (GLES)

SEP observations with PAMELA



Ground Level Enhancements (GLES)

e The most energetic (2500 MeV) SEP events induce atmospheric showers whose

secondary products are measured by ground-based detectors, including the
worldwide network of neutron monitors (NMs)

- 72 GLEs since 1940s, only 2 during solar cycle 24 — rare events!

- However, indirect observations rely on a number of assumption (CR interactions
with terrestrial magnetosphere and atmosphere) — large uncertainties!

e Aside from relevant Space Weather implications, GLEs are of particular interest
since they represent SEP acceleration at its most efficient.

Furthermore, the ~GeV protons causing GLE events can reach 1 AU with minimal
iInterplanetary scattering.

. Thus, their spectra provide important constraints on SEP origin.
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The PAMELA experiment

Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics

Main requirements = high-sensitivity particle identification and precise momentum measure
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Mass: 470 kg
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Time-Of-Flight
plastic scintillators + PMT
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- Albedo rejection;

- Mass 1dentification up to 1 GeV;
- Charge 1dentification from dE/dX.
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(shower topology)
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- Charge sign
- Charge value from dE/dx
- Particle direction

T
I
|
[
[
J

L

(o Research for Dark
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( eInvestigation of the

CR origin and
propagation
mechanisms in the
Galaxy, the
heliosphere and the
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magnetosphere

(e Detailed

measurement

of the different
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(galactic, solar,
geomagnetically
trapped and albedo)
in the near-Earth
radiation environment

Precise measurements of CR protons, electrons, their antiparticles and light nuclei between several tens of MeV and ~1 TeV
Almost 10 years of data taking (July 2006 - January 2016)
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The PAMELA experiment

* Thanks to its unique observational capabilities, the PAMELA
experiment has recently offered a unique opportunity to
study SEPs with energies between 80 MeV and few GeV,

> Including their energy spectra, composition (H, He) and pitch-
angle distributions

* |n particular, PAMELA has measured for the first time, with
good accuracy, the spectral features at moderate and high
energies,

- significantly improving the characterization of most energetic
SEP events, and allowing the investigation of the relationship
between GLE and non-GLE events

SEP observations with PAMELA



All associated with fast halo
CMEs (except 2012 Jul 8) and
>M-class flares (except 2013

Sept 29, filament eruption)

PAMELA data set

and accompanied by long- ||| s017 150

duration type-ll and type-lll 2| 120%/07 0140
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radio bursts 14 | 2012 05/17, 01:50

Six back-side eruptiOnS 19 | 2012 07/23, 06:307

2 GLE events (2006 Dec 13 .| 203 11/02 0725
and 2012 May 17) and 3 | 24000 0%
sub-GLEs (2012 Jan 27, 2| 20110225, 03:00
2012 Mar 7,2014 Jan 6) 3 21100

X-ray flux [W/m?]

Major SEP events observed by PAMELA between 2006 July and 2014 Sept N
SEP Event Flare CME
# Onset time Onset time Class Location | 1%t-app. time | Vg, | Width
1 | 2006 12/05, 15:00 | 12/05,10:19 | X9.0 | SO6ET79
2 | 2006 12/06, 23:15 | 12/06, 18:29 | X6.5 S05E64 | 12/06, 20:12 H 2012/01/23 \
3 | 2006 12/13,02:55 | 12/13,02:14 | X3.4 | S06W23 | 12/13,02:54 | 1774 | H 2013/09/30@ 2012/01/27
4 | 2006 12/14, 22:55 | 12/14,21:07 | X1.5 | S06W46 | 12/14,22:30 | 1042 | H 2012%3/07 2014/09/10 20“29/07 2%%’??/%/5122
5 | 2011 03/21, 03:30 | 03/21, 02:11® | <X1.3® | N23W129® | 03/21,02:24 | 1341 | H I, 120“/09/06 2012/05/7
6 | 2011 06/07,07:00 | 06/07,06:16 | M2.5 | S21W54 | 06/07,06:49 | 1255 | H E
7 | 2011 09/06,02:30 | 09/06,01:35 | M5.3 | N14W07 | 09/06,02:24 | 782 | H o /108 2006212714
8 | 2011 00/06,23:35 | 09/06,22:12 | X2.1 | N14W18 | 09/06,23:05 | 575 | H 23&;‘;;22’:5 20131028 pg12/07/12  2008/12003  12012/07/19
9 | 2011 11/04, 00:15 | 11/03, 22:45P | <X1.4> | NO9E154P | 11/03, 23:30 | 991 H 2014/01/07 2912/07/98
10 | 2012 01/23, 04:20 | 01/23,03:38 | MS8.7 | N28W21 | 01/23,04:00 | 2175| H 2014/04/18 2011/06/07
01/27,17:37 | X1.7 | N27W71 | 01/27,18:27 | 2508 | H
03/07,00:02 | X5.4 | NI17E27 | 03/07,00:24 | 2684 | H _
13 | 2012 03/13, 17:50 | 03/13,17:12 | M7.9 | N17W66 | 03/13,17:36 | 1884 | H front-side
05/17,01:25 | M5.1 | N11W76 | 05/17,01:48 | 1582 | H
15 | 2012 07/07, 00:05 | 07/06,23:01 | X1.1 | S13W59 | 07/06,23:24 | 1828 | H S
16 | 2012 07/08, 17:45 | 07/08,16:23 | M6.9 | S17TW74 | 07/08,16:54 | 1497 | 157 N
17 | 2012 07/12, 17:15 | 07/12,15:37 | X1.4 | S15W01 | 07/12,16:48 | 885 | H
18 | 2012 07/19, 06:25 | 07/19, 04:17 | M7.7 | S13W88 | 07/19,05:24 | 1631 | H
07/23, 02:31¢ | <X2.5¢ | S17TW132¢ | 07/23,02:36 | 2003 | H
20 | 2013 04/11, 08:00 | 04/11,06:55 | M6.5 | NO9E12 | 04/11,07:24 | 861 | H
21 | 2013 05/22, 13:50 | 05/22,13:08 | M5.0 | N15W70 | 05/22,13:25 | 1466 | H 2011/03/21
22 | 2013 09/30, 02:15 | 09/29,21:43 | C1.3 | N17W29 | 09/29,15:36 | 1179 | H 501801
23 | 2013 10/28, 17:55 | 10/28,15:07 | M4.4 | SO06E28 | 10/28,15:36 | 812 | H 2011/11/04
11/02, 04:00 NO3W139 | 11/02,04:48 | 828 | H W 20137 1/02
01/06, 07:30¢ | <X3.5° | S15W112¢ | 01/06, 08:00 | 1402 | H
26 | 2014 01/07,19:20 | 01/07,18:04 | X1.2 | S15W11 | 01/07,18:24 | 1830 | H 20“60"06
02/25,00:39 | X4.9 | SI12E82 | 02/25,01:25 | 2147 | H 2012007723
04/18,12:31 | M7.3 | S20W34 | 04/18,13:25 | 1203 | H
09/01, 10:54F | <X2.4° | N14E127¢ | 09/01,11:12 | 1901 | H
30 | 2014 09/10, 19:45 | 09/10,17:21 | X1.6 | N14E02 | 09/10,18:00 | 1267 | H back-side
References— (a) Rouillard et al. (2012), (b) Mewaldt et al. (2013), (¢) Nitta et al. (2013),
(d) Thakur et al. (2014), (e) Ackermann et al. (2017), (f) Plotnikov et al. (2017). S
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SEP events and magnetic connectivity
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Poorly connected, long duration events

E82-E127

PAMELA results demonstrate that poorly connected events can
contribute significantly to the high-energy SEP flux detected near the Earth
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The intensity time profiles are
organized by the longitude of
the associated solar events
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When high-energy particles from poorly
connected events are detected at Earth,
they tend to be in long duration, relatively
weak, SEP events, where processes such
as cross field diffusion and co-rotation
with the Sun delay their arrival and extend
their duration at Earth.



Spectral fits
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- SEP event-integrated spectra were fitted by using a functional form based on Ellison & Ramaty (1985),
consisting of a power-law spectrum modulated by an exponential:

G, (E) = Ax (E/E,)™ x e B/E0
where Ep is the rollover energy and the scaling energy Es is fixed to the PAMELA energy threshold (80 MeV)

> In the simplest scenario (no transport effects) and in terms of diffusive shock acceleration (DSA), the
slope of the power-law is related to the Mach number and the compression ratio, which govern the efficiency
for shock acceleration, while the cutoff energy is a reflection of the loss mechanisms (finite extension and
lifetime of the shock) = NB: a power-law extending to infinite energies is unphysical!
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Spectral fits
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* PAMELA data as a whole span about five and four orders
of magnitude in fluences and peak intensities, respectively.
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* Transient acceleration process with time- and space-
limited operations, i.e. quasi-spherical CME shocks of
limited extent which restrict the duration of acceleration at
high energy, where the limits arise from the limited time
the shock is strong and the divergent geometry.

—
o
w

Peak intensity [MeV s sr cm?]™
L

—
<
(&)

72000

Energy [MeV]
A. Bruno SEP observations with PAMELA



GLE vs non-GLE events

® GLEs: at least two independent NMs — including a near sea level station — registered a simultaneous
statistically significant increase related to the SEP arrival (threshold: 1T GV or ~433 MeV)
® sub-GLEs: SEP events registered only by the high-altitude South Pole NMs (threshold: ~300 MeV)

Several concomitant factors may contribute to the SEP variability and to the rarity of the GLE events,
such as the associated shock speed, morphology and evolution, the ambient conditions, the presence
of seed particle populations, the magnetic connection to Earth and the interplanetary transport.

8_IIIIII| 1 1 IIIIIII 1 1 IIIIII_ IIIIIII
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Peak flux (E > 433 MeV) [sr s cm?]™! Peak flux (E > 433 MeV) [sr s cm?]”

- The occurrence rate of SEP events of a given peak intensity is inversely related to the intensity itself.

~ No qualitative distinction between the spectra of GLE and non-GLE events was observed, suggesting
that GLEs are not a separate class, but rather are a subset of a continuous distribution of SEP events
that are more intense at high energies (harder spectra)

A. Bruno SEP observations with PAMELA
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PAMELA results and DSA theory
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Measured fluences well correlated with rollover energies, with the spectra of the most energetic
events exhibiting the highest cutoffs; the correlation improves with increasing proton energy.

o The more efficient the shock acceleration is, the greater the overall intensity of the particle
event and the hardness of the spectrum.
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SEP maximum energy

|t has been suggested that the maximum particle energy may be determined by several
concomitant factors,

> Including the shock speed, geometry and age, the coronal magnetic field strength and
configuration, and the presence of seed particle populations.

*Recent studies have shown that the most energetic particles originate very close to the Sun
(<2 Rs), where the magnetic field is stronger and thus the acceleration is more efficient

- This is corroborated by observations of type-ll radio bursts produced by electrons accelerated by
shocks, which commence at higher frequencies for the most energetic particle events

*Since both the shock speed and the magnetic field strength decrease with increasing
heliocentric distances, the maximum acceleration energy reduces with time as the shock
propagates out into the interplanetary space

* As higher energy particles are expected to be accelerated closer to the shock nose, better
magnetically connected events tend to have harder spectra

A. Bruno SEP observations with PAMELA
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* |n the scenario of DSA, the high-energy (several tens/

hundreds of MeV) spectral rollovers reported for the first
time by PAMELA are attributed to particles escaping the
shock region during acceleration due to effects mostly

related to the limited extension and lifetime of the shock

e three-dimensionality of the shock front (curvature), limited acceleration
time scales, and/or vanishing power in the magnetic field wave
spectrum (causing the diffusion coefficient to increase rapidly with the
heliocentric distance), each contributing to releasing particles from the
shock and terminating acceleration.

It should be emphasized that they represent a distinct
spectral feature with respect to the breaks previously
reported at much lower energies (few/tens of MeV/n)
in the spectra of H-Fe nuclei (e.g., Mewaldt et al. (2005))

While such low-energy spectral breaks, that decrease In
energy with the ion charge-to-mass ratio, were predicted
to originate from DSA at near-Sun, there are alternative
interpretations based on interplanetary transport effects
(e.g., Lee & Li (2005); Zhao et al. (2016))
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Er= rollover energy, Eo= break energy

70 keV - few GeV event-integrated spectra based on combined ACE+GOES+PAMELA data
GOES-EPEAD/HEPAD data are based on the calibrations by Sandberg et al. (2014) and Bruno (2017) for proton energies below and above 80 MeV, respectively
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Conclusions

-~ The PAMELA satellite-borne experiment has provided first direct spectral measurements of SEP

events over a wide energy region ranging from 80 MeV to few GeV, bridging the low-energy
observations by in-situ spacecraft and rare GLE detections made by the ground-based NM network.

e Spectra of the 26 major SEP events between 2006 December and 2014 September.

e Extension to other high-energy events in solar cycle 24 (e.g. 2017 September events) taking advantage of
cross-calibrated GOES data

o PAMELA results significantly improve the characterization of most energetic SEP events

* Measured spectra exhibit a high-energy rollover that can be attributed to the limits of DSA.

e However, transport processes must also contribute to the spectral variability, and further work is required
to explore the relative influences of acceleration and transport.

 No qualitative distinction between the spectra of GLE and non-GLE events, suggesting that GLEs are not a

separate class, but are a subset of a continuous distribution of SEP events that are more intense at high energies.

o The SEP spectra were reconstructed over a wide energy range by combining PAMELA, ACE and
GOES observations, enabling the investigation of the relationship between low- and high-energy
particles, and a clearer view of the SEP origin and propagation mechanisms (work in progress).

A. Bruno SEP observations with PAMELA
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Data analysis

e Proton intensities evaluated with a 48-min time resolution (=spacecraft semi-orbits).

e The effective “duty cycle” is rigidity dependent due to geomagnetic effects, and lower energy particles can be
measured only at higher magnetic latitudes

e To discard trapped/albedo particles and avoid magnetospheric effects, interplanetary CR fluxes are conservatively
estimated by selecting protons with rigidity 1.3 times higher than the local Stormer vertical cutoft

e The data gaps due to cutoff and low detection efficiency effects are corrected by exploiting the GOES data, previously
calibrated by using PAMELA data (Bruno 2017).

e The time dependent GCR background is subtracted for each semi-orbit, and computed by extrapolating to lower
energies the fit of the measured spectrum performed above the maximum SEP energy up to 100 GeV, based on the
force-field model

e Pitch angle anisotropies with respect to the local IMF direction are accounted for by estimating the instrument
*asymptotic” exposure along the satellite orbit, based on an accurate trajectory tracing analysis

 Event-integrated fluences are evaluated using the flux intensities from the various semi-orbits that register a signal
during the SEP event duration interval

@SCP(E):/T :Z wepi(E) X At;] —;xZFsem

=1
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Event-integrated intensity vs source heliographic location
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Spectral fits: cross-correlations

I I L I | ] L l L I L l L l |

T 1 .sigma and 2-sigma | Infitting spectra, a cross correlation between the power-law index and the
[ covariance error elipses | rollover energy is unavoidable, affecting parameter uncertainties.
> 700 | _
= | The rollover energy increases with growing spectral index.
§ 500 - 1 The reason for this is that when attempting an E-R fit to a given spectrum,
S if a steeper power law (larger spectral index) is chosen, the best fit is
© 40T | obtained when the greater fall off at higher energies in the power law is

2012 May 17 event compensated by a larger rollover energy.

300

_llllll|llll|llllllllllllllllllllll_

21 2.2 2.3 2.4 2.5 2.6 2.7
Spectral index
o L %{ ottt tTTT T Rollover energy vs spectral index global distribution. An overall trend
400} + %m | can be noticed, with higher rollover energies associated with larger
= a0 I 1 spectral indices.
L 2012/07/08 || [2014402/25 b :
; 200~ 2013/11/02 221/06/07 201%1/23 | N .
5 1 e A G The global positive correlation between rollover energy and power law
o — %?f’“fsﬂzﬁgm - index may be a manifestation of the effect illustrated in the figure
S 100 — 2013/04/11 [2014/01/07 —
i : : 2011/p3/21 U I : above ;
@) | —
oc u ‘ _
i ‘+ 4 | 1 further statistical investigation is necessary to infer more physical
e .| meaning to the trend.
0 1 2 3 4 5 6

Spectral index

A. Bruno SEP observations with PAMELA 23



Spectral fit in a wide energy range

* In general, spectral features observed at different energies may arise from particle acceleration in
different locations (e.g., the flare region, corona or interplanetary space), so the spectral shapes may
exhibit the combined signatures of several dynamic processes that may be complex to disentangle.

* Furthermore, the morphology and the evolution of SEP events are strongly influenced by the magnetic
connection to sources, and by interplanetary transport effects and transient/corotating solar wind
disturbances, which significantly complicate the interpretation of data.

* As a consequence, it Is challenging to model the SEP spectral shape over a wide energy range with
a simple functional form.

* An attempt to reproduce both the low-energy break and the high-energy rollover in the SEP spectra is
provided by the combined" function (see Bruno et al. (2019), Space Weather, 17, 419):

D, (E)=DPpyi(E) exp(—E/E,)

where:

A E " exp(—E/Ey) for E < (% — Y1) Eo,
(I)Band(E) —

AE™" [(,— 1) Eo)" ™ exp(ya,— )  for E> (1, — 7a) Fo,

IS the Band function, providing a smooth transition between two regions with different spectral index
(Ya, Yb); Er=rollover energy, Eo= break energy.
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Calibration of GOES-13/15 proton detectors

Bruno (2017), Space Weather, 15, 1191
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the high quality data measurements of PAMELA mission were used to calibrate the high-energy
(>80 MeV) proton channels (P6—P11) of the EPEAD and the HEPAD sensors onboard the
GOES-13 and -15, bringing the measured spectral intensities in-line with those registered by
PAMELA. Suggested corrections significantly reduce the uncertainties on the response of GOES
detectors, thus improving the reliability of the spectroscopic observations of SEP events.
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Spectral results for the 2017 September 10 GLE event

Bruno et al. (2019), Space Weather, 17, 419
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The new calibrated GOES/EPEAD-HEPAD data enable a more precise measurement of the
SEP energy spectra during the intervals when PAMELA was not acquiring data (e.g. 2011
August) or after the mission was terminated (e.g. the 2017 September events)

A. Bruno SEP observations with PAMELA



A. Bruno

Count increase [%]
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SEP pitch-angle distribution: the 2012 May 17 event
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PAMELA vs NMs
averaged over the first polar pass (01:58 - 02:20 UT)
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PAMELA observes two populations simultaneously with very
different pitch angle distributions:
o a low-energy component (<1 GV)
o confined to pitch angles <90°
o and exhibiting signicant scattering or redistribution;
o and a high-energy component (>1.5 GV)
o beamed with pitch angles <30°,
O consistent with NM observations.
o The component with intermediate energies (1 - 1.5 GY)
suggests a transition between the low and high energies.

At rigidities >1 GV, corresponding to NM data, the particles
are mostly field aligned.

May 17, 2012, 01:57:00 - 02:20:00 UT
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