

Searches for point-like sources of cosmic neutrinos with 11 years of ANTARES data

J.Aublin, G. Illuminati, S. Navas* for the ANTARES Collaboration

ICRC2019 - 27/07/2019 - Madison

The ANTARES neutrino telescope

- $\,\circ\,$ First detection line installed in early 2006
- \circ Completed in 2008
- 2475 m depth in the Mediterranean Sea
- \circ 40 km offshore from Toulon

- Three-dimensional array of 885 PMTs
- I2 vertical lines, 25 storeys
- 3 PMTs per storey
- PMT facing 45° downwards

Data sample

Track-like events: v_{μ} (v_{τ}) neutrino CC interaction near the detector Ve

Shower-like events: all neutrinos NC, v_e, v_τ CC interaction inside or very close to the detector

Period: Jan 29, 2007 to Dec 31, 2017 Livetime: 3136 days Events: 8754 tracks and 195 showers Same event selection as in the 9 years ANTARES point-source analysis Phys. Rev. D96 (2017) 082001

3

Method: Unbinned Likelihood

Time independent approach

$$\log L_{s+b} = \sum_{j} \sum_{i \in j} \log \left[\mu_{sig}^{j} S_{i}^{j} + N^{j} B_{i}^{j} \right] - \mu_{sig}$$

J: sample (tracks or showers) i: event in sample J

N: total # of events μ_{sig} : # of fitted signal events

Signal PDFs:

 $S_i = S^{space} \cdot S^{energy}$

Background PDFs:

 $B_i = B^{space} \cdot B^{energy}$

Source spectrum hypothesis: E⁻²

Method: Unbinned Likelihood

Time dependent approach

$$\log L_{s+b} = \sum_{j} \sum_{i \in j} \log \left[\mu_{sig}^{j} S_{i}^{j} + N^{j} B_{i}^{j} \right] - \mu_{sig}$$

J: sample (tracks or showers) i: event in sample J

N: total # of events μ_{sig} : # of fitted signal events

Searches

All-sky search

- Scan of the ANTARES visible sky in squares of I°xI°
- Most significant cluster: cluster with lowest p-value
- Source location free to vary in the likelihood maximization within the 1°x1° boundaries

Eta Carinae (α, δ) = (161.27°,-59.68°)

• Dedicated search for cosmic neutrinos from the stellar binary Eta Carinae assuming three different predicted neutrino spectra

Candidate list searches

- Search for cosmic neutrinos from the location of preselected candidates
- Three candidate searches:
- I 12 known astrophysical objects (TeVCat sources)
 75 IceCube tracks (HESE, EHE, alerts)
- > 54 IceCube tracks (HESE, EHE): space and time correlation

TXS 0506+056 (α, δ) = (77.36°, 5.69°)

- Dedicated search for
 - steady emission
 - \succ transient emission

from the direction of the blazar

Results: All-sky search

Results: All-sky search

Results: Candidate list search

Results: Eta Carinae

Spectrum models according to Phys.Rev. D96 (2017) no.12, 123017 • 10-S⁻¹ cm⁻² E² (dN/dE) [GeV⁻¹ 10-8 10⁻⁹ 10⁻¹⁰ ta Carinae 300 TeV cut-off model flu Eta Carinae 1 PeV cut-off model : 10-11 ANTARES Sensitivity 2007-2017 PS PRELIMINARY 10-12 10⁵ 10⁶ 10^{3} 10⁴ 10^{2} Energy (GeV)

Dedicated search at the location of Eta Carinae Neutrino spectrum of the form:

$$\frac{dN}{dE_{\nu}} = \Phi_0 (E_{\nu})^{-2} \exp\left(-\frac{E_{\nu}}{E_{cut}}\right)$$

Three values of the energy cut-off 90%C.L. Upper limits on the neutrino flux:

E _{cut}	$\Phi^{90\% C.L}/\Phi_0$	
100 TeV	6.9	
300 TeV	3.6	
l PeV	2.1	

Results: IceCube tracks search

Most significant IceCube candidate EHE ID3 $\hat{n}_s = 4.9$ I.5% (2.4 σ) post-trial

> Best-fit coordinates: $(\hat{\alpha}, \hat{\delta}) = (343.7^{\circ}, 23.6^{\circ})$

Results: IceCube tracks search

Astrophys.J. 879 (2019) no.2, 108 Time/Space correlation with IceCube tracks

13

Search for steady emission from TXS 0506+056

- TXS 0506+056 added to the list of 106 neutrino source candidates analysed in the latest ANTARES point-source search (Phys. Rev. D 96, 082001 (2017))
- TXS 0506+056 third most significant source
- Best fitted # of signal events $\mu_{sig} = 1.03$
- 3.4% pre-trial p-value
- 87% post-trial p-value
- 90% C.L. flux upper limits on the flux:

Spectrum	$\Phi_{100}^{90\%}$ [10 ⁻¹⁸ GeV ⁻¹ cm ⁻² s ⁻¹]
E ^{-2.0}	l.6
E ^{-2.3}	I.4
E ^{-2.5}	1.0

Events close to TXS 0506+056 in 2007-2017 ANTARES data

- Closest event at 0.3° from the source position
- Recorded on December 12, 2013
- Only 9% of v events have higher estimated energy

Search for transient emission from TXS 0506+056

$PDF = \frac{P^{space}}{P^{space}} \cdot P^{energy} \cdot P^{time}$

- Bursting period defined by the two profiles provided by the IceCube Collaboration:
 - Gaussian flare (centered on December 13, 2014)
 - Box flare (centered on December 26, 2014)
- No signal found during either of the considered flares
- 90% C.L. upper limits on the neutrino flux derived for the Gaussian-shaped period:

Spectrum	$\Phi_{100}^{90\%}$ TeV [10 ⁻¹⁸ GeV ⁻¹ cm ⁻² s ⁻¹]	5%-95% energy range
E ^{-2.0}	4.6	2.0 TeV – 3.2 PeV
E ^{-2.1}	4.4	1.3 TeV – 1.6 PeV
E ^{-2.2}	4.2	1.0 TeV – 1.0 PeV

For the box-shaped period the flux normalization factors are a factor 3.3 higher

Summary

- $\,\circ\,$ Various searches for steady and transient point-like neutrino sources presented
- No significant point-like emission found, upper limits set on neutrino flux and fluence
- All-sky search: largest excess with 1.2 σ post-trial at (α , δ) = (343.7°, 23.6°)
- Candidate list over astrophysical objects: largest excess with 1.4σ post-trial found for HESSJ0632+057
- \circ Candidate list over IceCube tracks: largest excess with 2.4 σ post-trial found for EHE ID3
- Candidate list over IceCube tracks (time-dependent): largest excess with 90% post-trial found for EHE ID15
- $\circ~$ Upper limits on the neutrino flux and fluence from TXS 0506+056
- $\circ~$ Upper limits on the neutrino flux for three proposed neutrino emission models for Eta Carinae

Data set for the 2007-2017 ANTARES search for cosmic neutrino point sources

Available here: <u>http://antares.in2p3.fr/publicdata2017.html</u>