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Why G1.9+0.3?

General Properties
* No detection in gamma rays yet
» Located near the galactic center

» Radius of around 2pc
(difference between radio and
X-rays)

« Age of about 100yrs

» Shock speed of about
14.000km/s

* Probably a type1a supernova

—> G1.9+0.3 could be an very efficient particle accelerator
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Fermi acceleration

Coupled equations

Cosmic-ray
transport equation

Magnetic Turbulence

Hydro equations
Magnetic field

sl etTects

Feedbz are negligiBledQrey.9+0.3
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Fermi acceleration
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The equation is solved:

* One dimensional

* Assuming spherical symmetry

* Including Synchrotron cooling for electrons

« On a comoving, expanding grid - no free escape boundary
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Fermi acceleration
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Advection + Compression Casbading Growth +'Damping

= — (WV.Ey + cV.vEy) + k3V,D,V, + Z(Fg — Fd)EW

: Energy density in magnetic turbulence per unit logarithmic bandwidth

Bior = \/Bg + 4njEWdlnk

The equation is solved: Turbulence growth at the largest

« Assuming isotropic, alfvenic turbulence
« 1D and spherically symmetric
« Same spatial grid as for cosmic rays
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Fermi acceleration

Hydro modeling:

« Solving the standard gas-dynamical equations

» 1D and spherically symmetric

* Modeled as type1a-explosion in a uniform medium
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* Free parameter: ambient density
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Fermi acceleration

Figure: Plasma density in 2D simulations
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Figure: Plasma density in 1D simulations
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MHD instabilities might drive magnetic field amplification at both shocks

- Additional field downstream at both shocks included
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Results

* 0.75% of the thermal energy
density at both shocks
transferred into magnetic field:
B, = 180uG (FS)

By = 120uG (RS)

* Acceleration at reverse shock
inefficient but emission bright in
Radio and GeV gamma-rays

« TeV dominated by forward
shock IC emission
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Results
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Results

DESY

Reproducing the
profile requires a two-
shock model

Different expansion
speeds of x-ray
(14,000km/s) and
radio (9,500km/s)
features

- consistent with
two-shock model
(14,000km/s and
11,000km/s)

Very low intensity in

Scaled intensity

Reverse Forward
shock shock

the center 2 no
spherical symmetry
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Results

« Simulated brightening of 0.75%/yr
roughly consistent with measured
brightening of 1.2%/yr

« Brightening indicates a magnetic field
growth faster than predicted in our
model

What is the spectral
evolution during the
lifetime of the SNR?
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Results

Time-dependent
turbulence amplification
limits E,,,,, at early
times

The decay of
turbulence alters
particles spectra at late
times = Non-negligible
escape of high-energy
particles fom far
downstream leads to
softer spectra

HE electrons escaping
past the CD stop being
cooled
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Summary

 The SED can be reproduced in a two-shock scenario and the emission profile
requires two shocks

* The electron-cutoff energy is consistent with the self-consistent amplification of
Alfvenic turbulence

« Additional magnetic field generation in the downstream is needed for the
emission

* No indication for CR-pressure feedback

« Self-consistent turbulence treatment naturally provides soft particle spectra at
late evolutionary phases (s = 2.7)
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