The young supernova remnant G1.9+0.3 and the late-time gamma-ray emission from SNR

Robert Brose, Iurii Sushch, Martin Pohl ICRC2019, Madison, 29.07.2019

Why G1.9+0.3? Overview

General Properties

- No detection in gamma rays yet
- Located near the galactic center
- Radius of around 2pc (difference between radio and x-rays)
- Age of about 100yrs
- Shock speed of about 14.000km/s
- Probably a type1a supernova

G1.9+0.3 could be an very efficient particle accelerator

Coupled equations

Feedbackreffects are negligiblenfora@\$A9+0.3

Transport equation for cosmic rays

$$\frac{\partial N}{\partial t} = \nabla \underbrace{D_r \nabla N}_{\text{Diffusion}} - \nabla v \underbrace{N}_{\text{Advection}} - \frac{\partial}{\partial p} \underbrace{\left(\underbrace{N\dot{p}}_{\text{Cooling}} - \underbrace{\frac{v}{3}Np}_{\text{Acceleration Injection}}\right) + \underbrace{Q}_{\text{Diffusion}}$$

The equation is solved:

- One dimensional
- Assuming spherical symmetry
- Including Synchrotron cooling for electrons
- On a comoving, expanding grid \rightarrow no free escape boundary

Transport equation for magnetic turbulence

$$\frac{\partial E_W}{\partial t} = - \left(v \nabla_r E_W + c \nabla_r v E_W \right) + k^3 \nabla_k D_k \nabla_k \frac{E_W}{k^3} + 2 \left(\Gamma_g - \Gamma_d \right) E_W$$

Advection + Compression Cascading Growth + Damping

 E_W : Energy density in magnetic turbulence per unit logarithmic bandwidth

$$B_{tot} = \sqrt{B_0^2 + 4\pi \int E_W d \ln k}$$

The equation is solved:

- Assuming isotropic, alfvenic turbulence
- 1D and spherically symmetric
- Same spatial grid as for cosmic rays

Turbulence growth at the largest scales takes time and limits E_{Max} !

Additional ingredients

Hydro modeling:

- Solving the standard gas-dynamical equations
- 1D and spherically symmetric
- Modeled as type1a-explosion in a uniform medium

$$\frac{\partial}{\partial t} \begin{pmatrix} \varrho \\ \boldsymbol{m} \\ E \end{pmatrix} + \nabla \begin{pmatrix} \varrho \boldsymbol{v} \\ \boldsymbol{m} \boldsymbol{v} + P \boldsymbol{I} \\ (E+P) \boldsymbol{v} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \Lambda \end{pmatrix}$$

$$\frac{\rho \boldsymbol{v}^2}{2} + \frac{P}{\gamma - 1} = E$$

• Free parameter: ambient density

Two dimensional effects

Figure: Plasma density in 1D simulations

Figure: Plasma density in 2D simulations

MHD instabilities might drive magnetic field amplification at both shocks

→ Additional field downstream at both shocks included

Forward and reverse shock model: Spectral energy distribution

- 0.75% of the thermal energy density at both shocks transferred into magnetic field: B_d = 180µG (FS) B_d = 120µG (RS)
- Acceleration at reverse shock inefficient but emission bright in Radio and GeV gamma-rays
- TeV dominated by forward shock IC emission

Magnetic field and particle distribution

 Similar magnetic fields but higher CR density at low energies makes the reverse shock bright in Radio and GeV gamma-rays

Results Reverse Forward shock shock **Emission profile** Reproducing the Xray-data 1.0 ٠ profile requires a two-Radio-data shock model Xray-Two Shocks Radio-Two Shocks 0.8 Xray-One Shock Different expansion ٠ Radio-One Shock speeds of x-ray Scaled intensity (14,000km/s) and 0.6 radio (9,500km/s) features \rightarrow consistent with two-shock model 0.4 (14,000km/s and 11,000km/s) 0.2 Very low intensity in ٠ the center \rightarrow no spherical symmetry 0.5 0.7 0.8 0.9 1.0 0.4 0.6 Relative position

- Radio Brightening
- Simulated brightening of 0.75%/yr roughly consistent with measured brightening of 1.2%/yr
- Brightening indicates a magnetic field growth faster than predicted in our model

What is the spectral evolution during the lifetime of the SNR?

Future evolution of the SED

- Time-dependent turbulence amplification limits E_{max} at early times
- The decay of turbulence alters particles spectra at late times → Non-negligible escape of high-energy particles fom far downstream leads to softer spectra
- HE electrons escaping past the CD stop being cooled

- The SED can be reproduced in a two-shock scenario and the emission profile requires two shocks
- The electron-cutoff energy is consistent with the self-consistent amplification of Alfvenic turbulence
- Additional magnetic field generation in the downstream is needed for the emission
- No indication for CR-pressure feedback
- Self-consistent turbulence treatment naturally provides soft particle spectra at late evolutionary phases ($s \approx 2.7$)