Search for High Energy Neutrinos from Populations of Optical Transients

Robert Stein
For the IceCube Collaboration
Neutrino Astronomy

Many Astrophysical Neutrinos

Enormous atmospheric background

IceCube Preliminary

IC2012-2016
Neutrino Astronomy

Many Astrophysical Neutrinos

Enormous atmospheric background

IC2012-2016

Rate per Bin / Hz

10^{-4}

10^{-6}

10^{-8}

10^{-10}

10^2 10^3 10^4 10^5 10^6 10^7 10^8

Muon Energy Proxy / GeV

IceCube Preliminary

Alerts

See Talk by Chun Fai

PoS(ICRC2017)1005
Neutrino Astronomy

Many Astrophysical Neutrinos

Enormous atmospheric background

Stacking Alerts

PoS(ICRC2017)1005
Leveraging the lower-energy neutrinos

- Central problem in neutrino astronomy is “too much background”. Knowing where and when to look can help us!
Leveraging the lower-energy neutrinos

- Central problem in neutrino astronomy is “too much background”. Knowing where and when to look can help us!
Leveraging the lower-energy neutrinos

- Central problem in neutrino astronomy is “too much background”. Knowing where and when to look can help us!

- “Stacking analyses” combines neutrino emission from many sources. We use lower-energy neutrinos to make statistically-significant statements on populations.
What are Tidal Disruption Events?

1. Star
2. Star distorted by tides
3. Accretion disk
4. Disrupted star

Particle jet
But what is a TDE? And what is not?

Nuclear Transients

TDEs
AGN
Nuclear SNe
But what is a TDE? And what is not?

Need pure TDE sample for neutrino analysis

This requires extensive photometry + spectroscopy

Of literature candidates: 12/60 “convincing” Non-Jetted TDEs, 3/60 Jetted TDEs

Stacking analysis performed on these TDEs using IceCube data from 2008 to 2017
IceCube constraints on TDE neutrino emission

(Hypothesis: TDEs are Neutrino Standard Candles)

Large uncertainties in constraints are driven by poor rate estimation from “traditional astronomy”.

NEW RESULT!

a: 2015ApJ...809...98A (IceCube Collab.)
b: 2018ApJ...852...72V (van Velzen)
c: 2015ApJ...812...33S (Sun et al.)

With evolution from Sun et al.
Large uncertainties in constraints are driven by poor rate estimation from “traditional astronomy”.

NEW RESULT!

IceCube constraints on TDE neutrino emission

(Hypothesis: Neutrino Luminosity proportional to M_{BH})

- **NEW RESULT!**
- Large uncertainties in constraints are driven by poor rate estimation from “traditional astronomy”.

Figure 1:

- **IceCube constraints on TDE neutrino emission**
 - **Hypothesis:** Neutrino Luminosity proportional to M_{BH}
 - **NEW RESULT!**
 - Large uncertainties in constraints are driven by poor rate estimation from “traditional astronomy”.

Figure Description:

- **IceCube constraints on TDE neutrino emission**
- **Hypothesis:** Neutrino Luminosity proportional to M_{BH}
- **NEW RESULT!**
- Large uncertainties in constraints are driven by poor rate estimation from “traditional astronomy”.

Legend:

- **IceCube diffuse flux**
- **Jetted TDEs**
- **Standard Candle Limit**
- **$L_{\nu} \propto M_{BH}$ Limit**

Graph:

- **Diffuse fraction** vs. **Mean TDE BH Mass (\bar{M}_{BH}) [M_\odot]**
 - **IceCube Preliminary**
 - **Standard Candle Limit**
 - **$L_{\nu} \propto M_{BH}$ Limit**

Notes:

- **a:** 2015ApJ...809...98A (IceCube Collab.)
- **b:** 2015ApJ...812...33S (Sun et al.)

With evolution from Sun et al.
Neutrinos from Optical Transients | Robert Stein | ICRC 2019

This Analysis

Tidal Disruption event (TDE)

<26% <1.3%

Jetted

Non-jetted

Previous Analyses

<1% <13% <28%

Gamma-Ray Burst (GRB) Supernova with choked jets Supernova Type IIn

https://arxiv.org/abs/1601.06484

Preliminary (Publication in prep)
The universe has surprises in store for us!

AT2018cow

Extraordinary transient Candidate TDE? Nearby “Fast Blue Optical Transient” (FBOT)?

60 ATELs >10 papers!
Latest IceCube results...

AT2018cow neutrino emission limit (100GeV - 10PeV)

(Time-integrated emission in 130-day window)
Summary

- Transients provide an opportunity for searches with much-reduced background.

- No significant neutrino emission found from TDEs. Previous studies limited CCSNe contribution.

- No significant emission from AT2018cow, whatever it was.

- New surveys such as ZTF, and upcoming surveys such as LSST, mean multi-messenger datasets available will improve dramatically in the near future.

- Search continues for an identified neutrino source population