GRAINE project and first results on 2018 balloon-borne experiment

BG photo: GRAINE2011, JAXA scientific ballooning (taken by NHK)

All-sky map by Fermi Gamma-ray Space Telescope using nine years of data collected from 2008 to 2017

>5000 sources (FL8Y)

Intrinsic position accuracy of ~50nm

Precisely tracking beginning of e-pairs suppressed multiple Coulomb scattering

- → High angular resolution
- → Polarization sensitive
- +Large scalability
- +Automatic large-area-analysis technique
- +Timestamping technique

Novel γ-ray telescope

Highest angular resolution First polarization sensitivity

Largest aperture area

 $GRAINE {\tiny \mbox{Emulsion γ-ray telescope} \atop \mbox{Repeated long-duration balloon flights}}$

Gamma-Ray Astro-Imager with Nuclear Emulsion

stage shifter)		* 10m^2 * $\varepsilon_{\text{trans}}$ * $\varepsilon_{\text{conv}}$ * ε_{det}
	Fermi LAT	GRAINE
Angular resolution @100MeV	6.0deg (105mrad) x1	1.0deg (17mrad)
@1GeV	0.90deg (16mrad) x1	0.1deg (1.7mrad)
Energy range	20MeV - 300GeV	10MeV - 100GeV
Polarization sensitivity		Yes
Effective area @ 100MeV	0.25m ²	2.1m ² *
@ 1GeV	0.88m² ×	2.8m ² *
Dead time	26.5μ sec(readout time)	Dead time free

GRAINE 2011

First balloon-borne emulsion γ -ray telescope experiment

First balloon-borne experiment Feasibility demonstration

GRAINE 2011 Flight data analysis Angular resolution (pβ)_{left} : 60 +20 -12 [MeV/c] γ-ray event detection $(p\beta)_{right}: 32 + 9 - 6 [MeV/c]$: 92 +22 -13 [MeV] .deg@100MeV (+24% -14%) Low energy threshold (<50MeV) Time resolution Large incident angle (>45deg) RMS: 0.21[sec] High reliability (>97%) Reliability: 99% Eγ: 45-245[MeV] $\theta \gamma : 0-47[deg]$ 12.5cm Background measurement 0.8 ∆t[sec] Valdez et al. (1970), 4.5GV Dahlbacka et al. (1973), 4.5GV taib et al. (1973), 4.5GV **GRAINE First Light** Kinzer et al. (1974), 4.5GV Ryan et al. (1977), 4.5GV Schonfelder et al. (1980), 4.5GV Staib et al. (1973), 12GV Sinzer et al. (1974), 11.5GV **Exposure**

167 [cm² hour]

139

S. Takahashi et al., PTEP 043H01 (2015); H. Rokujo et al., NIM A 701, 127 (2013)

10° 10° Energy [MeV] Feasibility demonstration

Launched, 6:33 12th May 2015

Design, various improvements & preparations
Establishment of a scheme & flow of the experiment in Australia
Demonstration of the telescope performance

Summary of GRAINE 2015

- 3780cm² aperture (x30, new-type emulsion films, total 48m²)
- 14.4hour flight duration (11.5hour(x7)@36.0–37.4km)
- Establishment of a scheme & flow of the experiment in Australia
- Emulsion track read-out, total 41m² w/ HTS
- Emulsion film S/N ratio x~20, data size ~1/20
- Track finding inefficiency in a single film ~1/10
- Data reduction load for γ -ray event detection $\sim 1/200$
- Data processing of all active area, 2830cm² aperture (total 30m²)
- γ -ray PSF ~1.0deg@100MeV
- Time resolution, 9.8 msec (~1/10)
- Star camera sensitivity, magnitude of $6.1 \rightarrow 7.5$

Significant progress from GRAINE 2011

H. Kawahara, et al., KMI 2017, https://pos.sissa.it/294/059; H. Rokujo, et al., PTEP 063H01 (2018); E. Mizutani et al., NIMA (Submitted)

F. Mizutani et al., NIMA (Submitted).

GRAINE 2015

γ-ray detection from Vela Pulsar (Not achieved)

Apr 2018, JAXA ballooning in Australia

Prospects for enlarging effective area x time and BG reduction

- Robustnized star camera systems $\rightarrow x1.77$ eff. time
 - Redundant data storages, Recoverable system from errors
- Stabilized emulsion films \rightarrow x1.33 eff. area
 - Established optimal parameters for production & processing
- Established multi-stage shifter setup \rightarrow x1.33 eff. area x time
 - Optimized emulsion film mounting
- Corrected multi-stage shifter operation $\rightarrow x1/2$ BG

Total x6.3 improvements.

Overall performance demonstration

Imaging resolution aimed w/i 1deg above 100MeV

GRAINE 2018

Google Earth
Data SIO, NOAA, U.S. Navy, NGA, GEBCO
Image Landsat / Copernicus

Alice
Spring

Flight duration: 17.
Level flight @38.1 Fully covered Vela

Alice Longreach

Flight duration: 17.4h (21%个) Sydney

Level flight @38.1 – 35.4 km: 14.7h (28%个) Fully covered Vela pulsar in 45 deg zenith

(10%个)

- ✓ Stably operated (Multi-stage shifter, 3 star cameras, Pressure vessel)
- ✓ Recovered (Apr 27 to Longreach)
- ✓ Developed (Apr 29 May 13 @U Sydney)

Various developments, improvements, preparations

Aperture of 3780cm²

GRAINE 2018, JAXA Scientific balloon @BLS Alice Springs Australia, 6:30AM 26th April (ACST)

GRAINE 2018, Converter+Timestamper+Attitude monitor γ-ray arrival direction reconstruction in galactic coordinates

GRAINE 2018, Converter+Timestamper+Attitude monitor

Search for galactic diffuse emmision

First indication of astrophysical gamma-rays for the emulsion gamma-ray telescope

Progress of data processing for Vela pulsar observation

Takahashi, Aoki GRAINE Scientific observation roadmap et al., ASR 62 2021–, Scientific flight (2018) 2945

Apr 2018, Demonstration

Alice Springs

Alice Springs
0.39m² aperture

| by JAXA balloon | ballo $3 - 5 \text{ g/cm}^2 \text{ altitude}$

Improvements

Vela pulsar detection, Imaging) phase resolved analysis

Galactic diffuse & Geminga

detection/indication

Imaging resolution

aimed w/i 1deg above 100MeV PS3-255: Gamma-ray Imaging

Performance of Nuclear **Emulsion Telescope in GRAINE-**2018 Balloon Experiment

Hiroki Rokujo

10m² aperture >~36hours flight duration <~10g/cm² altitude

Vela pulsar Polarization observation (<50%)

Precise spectrum measurement High resolution imaging

SNR W44 (<200MeV, >200MeV)

Galactic Center Obs. with ~arcmin resolution

Studying transient

Resolving GeV γ -ray

excess at galactic center

Pioneering polarization

observation for high

Studying cosmic ray

energy γ-rays

sources

& high photon stats

Search for GeV γ -ray Pair Halo \rightarrow Constraints on IGMF

Test of fundamental symmetries beyond the Planck scale Transient sources Obs. w/ high sensitivity

sources & w/ ones Search for γ -ray correlation with Giant Radio Pulses from pulsars

