Cosmic-ray Elemental Spectra Measured with ISS-CREAM

Ryuji Takeishi

for the ISS-CREAM Collaboration
Sungkyunkwan University
July 30, ICRC2019

Cosmic rays

All-particle spectrum

- Possible origin of galactic cosmic rays is thought as supernova remnants.
- The "knee" structure in allparticle spectrum shows possible acceleration limit signature.
- Direct measurements of individual elemental spectra can test the supernova acceleration model.

Cosmic ray spectrum hardening

- Hardening above ~200GeV/nucleon
- Needs extension to higher energies by measurements with more statistics

ISS-CREAM experiment

- Launched and started observation from August 2017.
- Measure cosmic rays up to ${ }^{\sim} 10^{15} \mathrm{eV}$

- Silicon Charge Detector (SCD): charge measurement (Sungkyunkwan Univ.)
- Calorimeter (CAL): energy measurement (Univ. of Maryland)
- Top/Bottom Counting Detector: e/p separation by shower shape (Kyungpook National Univ.)
- Boronated Scintillator Detector: e/p separation by neutron detection (Penn State Univ., NASA GSFC, Northern Kentucky Univ.)

ISS-CREAM Collaboration

Y. Amare ${ }^{1}$, D. Angelaszek ${ }^{1,2}$, N. Anthony ${ }^{1}$, G. H. Choi ${ }^{3}$, M. Chung ${ }^{1}$, M. Copley ${ }^{1}$, L. Derome ${ }^{4}$, L. Eraud ${ }^{4}$, C. Falana ${ }^{1}$, A. Gerrety ${ }^{1}$, L. Hagenau ${ }^{1}$, J. H. Han ${ }^{1}$, H. G. Huh ${ }^{1}$, Y. S. Hwang ${ }^{5}$, H. J. Hyun ${ }^{5}$, H.B. Jeon5, J. A. Jeon³, S. Jeong ${ }^{3}$, S. C. Kang ${ }^{5}$, H. J. Kim ${ }^{5}$, K. C. Kim ${ }^{1,2}$, M. H. Kim ${ }^{1}$, H. Y. Lee ${ }^{3}$, J. Lee ${ }^{3,5}$, M. H. Lee ${ }^{1}$, C. Lamb ${ }^{1}$, J. Liang ${ }^{1}$, L. Lu ${ }^{1}$, J. P. Lundquist ${ }^{1,3}$, L. Lutz ${ }^{1}$, B. Mark ${ }^{1}$, A. Menchaca-Rocha ${ }^{6}$, T. Mernik ${ }^{1}$, M. Nester ${ }^{1}$, O. Ofoha ${ }^{1}$, H. Park ${ }^{5}$, I. H. Park ${ }^{3}$, J. M. Park ${ }^{5}$, N. Picot-Clemente ${ }^{1}$, S. Rostsky ${ }^{1}$, E. S. Seo ${ }^{1,2}$, J. R. Smith ${ }^{1}$, R. Takeishi³, T. Tatoli¹, P. Walpole ${ }^{1}$, R. P. Weinmann ${ }^{1}$, J. Wu ${ }^{1}$, Z. Yin ${ }^{1,2}$, Y. S. Yoon ${ }^{1,2}$ and H. G. Zhang ${ }^{1}$
${ }^{1}$ Inst. for Phys. Sci. and Tech., University of Maryland, College Park, MD, USA
${ }^{2}$ Dept. of Physics, University of Maryland, College Park, MD, USA
${ }^{3}$ Dept. of Physics, Sungkyunkwan University, Suwon, Republic of Korea
${ }^{4}$ Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France
${ }^{5}$ Dept. of Physics, Kyungpook National University, Daegu, Republic of Korea
${ }^{6} /$ nstituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
Thanks to NASA HQ/GSFC WFF/JSC/MSFC/KSC, SpaceX and JAXA

ISS-CREAM SCD and CAL

See G. Choi's poster for SCD See K. Kim's poster for CAL

- SCD is 4 layers silicon pixel detector (2688 channel/layer).
- SCD signals are proportional to square of cosmic ray charge.
- CAL consists of 20 tungsten layers and scintillating fiber ribbons, oriented alternately in x - and y-directions.

Sample cosmic ray events

- 20171116 02:26:43

FULL

SCD

CAL, T/BCD
BSD

Date: 11/16/2017
Time: 2:34:2

ZCLB: 1
EHIGH: 1
ELOW: 1

- 20170910 SCD event hit map

Charge distribution with sample data

Analysis condition

- Reconstructed energy > 10 TeV

Data:

- 20170822-20190212 (540 days)
- Data collection time: ~1 year
- Physics trigger events provided by CAL or T/BCD
- Use layer 1 for SCD (since charge change in layers is under study)

Monte-Carlo:

- Geant3 MC toolkit
- Power-law energy distribution with index-2.7

Event selection and tracking

Hit positions are determined using highest energy and neighboring ribbons, then fit them by linear line

Selection condition (based on [CREAM collaboration, ApJ 728:122 (2011); ApJ 839:5 (2017)])

- $\geqq 6$ consecutive layers have hits
- $\geqq 1$ channel of above hits have energy deposit $>45 \mathrm{MeV}$
- Track fit line: $\chi^{2} / n d f<10$

See J. P. Lundquist's poster for improved tracking study

Example event of CAL tracking

Charge determination

- Reconstructed track is extrapolated to SCD.
- Highest signal pixel is searched within 7×7 pixel area.
- After path length is corrected, incident charge is determined.

Energy Measurement

- CAL ADC signals are converted to energy deposits using calibration beam test data [CREAM collaboration, Proc. ICRC2017, 247, Proc. ICRC2011, 392, Nucl. Phys. B (Poc. Suppl.) 150, 272 (2006)]
- CAL has three gain ranges, and only low range is used in this work. Other ranges will be included soon.
- Extended to higher energies by MC.

Energy deposit - incident energy relation

Elemental spectra

- Power-law shapes with indexes close to 2.5-2.7.
- More corrections are still to be made, but data reach about 1 PeV .

Summary

- We presented preliminary analysis methods and elemental spectra observed with ISS-CREAM.
- They showed reasonable power-law shapes and highest energy for proton is about 1 PeV .
- The calibration and analysis are preliminary, which will be completed soon.
- The analysis results will constrain particle acceleration models more.

Charge determination

- Select $0.7<Z<1.7$ as $p, 1.7<Z<2.7$ as $\mathrm{He}, 5.5<Z<6.5$ as C, $7.5<Z<8.5$ as 0 .

Carbon

SCD analysis: Charge resolution for heavy nuclei

- Fit hits in SCD layer 1, 2, 3 by linear line
- Calculate average signal ADC value of the hits
- Convert ADC to charge

Analysis condition for charge $Z>4$:

- Fit line is within TCD area.
- χ^{2} / ndf < 10
- Charge difference: within ± 0.5
- SCD layer 4 is excluded due to power was on/off in the analysis period (will be added later).

Charge distribution

ISS-CREAM

Z is calculated from $A D C\left(A D C \cos \theta \propto Z^{2}\right)$

Charge resolution (SCD 3 layers)

We fit large peaks by Gauss distribution.

Charge resolution is $0.1 \mathrm{e}-0.3 \mathrm{e}$ for all peaks.

We have still a lot of rooms to improve it by using channel-tochannel correction ($\sim 0.18 \mathrm{e}$ at charge = 10).

Charge distribution calculation

20170827-20180619
Signal distribution

Charge distribution for CREAM-balloon

