TALE Cosmic Rays Composition

Tareq AbuZayyad for the Telescope Array Collaboration ICRC 2019 Madison, WI 2019/07/25

Outline

- Introduction
- TALE Detector
- Data and Analysis
- Results
 - Primary fractions
 - Mean log(A)
 - Xmax elongation
- Summary

Introduction

- We present results on a measurement of the cosmic rays composition using the Telescope Array Low Energy Extension (TALE) fluorescence detector (FD).
- We infer composition through measuring the shower development Xmax.
- The measurement covers the cosmic rays energy range $10^{15.3} 10^{18}$ eV

Telescope Array (TA) Low Energy Extension (TALE)

10 new telescopes to look higher in the sky (31-59°) to see shower development to much lower energies

Infill surface detector array

Data and Analysis

- TALE FD monocular data (Cherenkov light dominated).
- Data collection period: 06/2014 11/2018
 - ~2700 hours of observation
- Monte Carlo: EPOS-LHC hadronic model (using CONEX generator) [Start at 10^{15.0} eV]
- Monte Carlo: QGSJetII-03 hadronic model (using CONEX generator) [Start at 10^{15.5} eV]
- Work in Progress; QGS simulations at lower energies in the process of being added to the analysis.

Analysis: Primary Fractions (Xmax Fits)

- Event reconstruction: Shower calorimetric energy, shower Xmax for each event.
- Events (Data & MC) binned in energy; bins [0.1 in log(E)]
- At each energy bin:
 - Fit Data Xmax distribution histogram as a sum of four (MC) primary Xmax distributions:
 - Primaries: proton, helium, nitrogen (CNO), iron.
 - MC / Data reconstructed, filtered identically.
- Energy range: $15.2 < log10(E_{cal} [eV]) < 18.0$
 - Run out of statistics above 10¹⁸ eV.
- Use ROOT's TFractionFitter to do actual fit.

Reconstruction Resolution (Geometry) (1)

- One histogram per decade in energy starting at $E = 10^{15.3}$ eV
- Shower Track R_p [m]
- Histogram: $\Delta R_p / R_p$

Reconstruction Resolution (Geometry) (2)

- One histogram per decade in energy starting at $E = 10^{15.3} \text{ eV}$
- Shower Track ψ angle (degree)
- Histogram: $\Delta \psi$ (degree)

Reconstruction Resolution (Energy)

- One histogram per decade in energy starting at E = 10^{15.3} eV
- Shower Energy [eV]
- Histogram: ΔE / E

Reconstruction Resolution (Xmax)

- One histogram per decade in energy starting at E = 10^{15.3}
 eV
- Shower X_{max} [g / cm²]
- Histogram: ΔX_{max} [g / cm²]

Example Xmax distributions (1)

• $15.7 < \log_{10}(E_{cal}) < 15.8$

• All Plots: (Black) Data

Top left: Iron

• Top right: CNO

Bottom left: Helium

Bottom right: Proton

Example Xmax distributions (2)

• $16.9 < \log_{10}(E_{cal}) < 17.0$

• All Plots: (Black) Data

Top left: Iron

• Top right: CNO

Bottom left: Helium

Bottom right: Proton

Fit results (EPOS-LHC)

- Lowest Energy bin starts at: $log_{10}(E_{cal}) = 15.2$
- Mean log(A) calculated as a weighted sum of log(A) for each of 4 fit primaries.
- MC thrown with equal number of primaries:
 <ln (A)> = 2.01
- Reconstructed MC
 <ln (A)> blue squares.
- TALE data (corrected fractions) shown in red.

Fit results (QGSJetII-03)

- Lowest Energy bin starts at: $log_{10}(E_{cal}) = 15.7$
- Mean log(A) calculated as a weighted sum of log(A) for each of 4 fit primaries.
- MC thrown with equal number of primaries:
 (A)> = 2.01
- Reconstructed MC
 <ln (A)> blue squares.
- TALE data (corrected fractions) shown in red.

Mean Reconstructed X_{max} vs. Shower Energy

- (Top Figure): Reconstructed Data
 <X_{max}> vs. Shower total Energy
 starting at log(E [eV]) = 15.3
 - Also shown, results for 4 MC primaries.
- (Bottom Figure): A broken line fit to TALE data $< X_{max} >$
 - Break point: 17.23 +/- 0.05
 - Slope before: 35.13 +/- 0.35
 - Slope after: 62.40 +/- 4.95
- (Bottom Figure): Also shown (red squares) are <X_{max}> reported by TA using hybrid events from Black Rock / Long Ridge FD's and the main SD array.

Summary

- Presented a TALE measurement of cosmic rays composition
- Data X_{max} distributions were fit to a mix of four primaries (p, He, CNO, Fe)
- Results: Fit primary fractions; mean log (A) calculated from fit primary fractions
- Mean X_{max} variation with shower energy shows a break in the elongation rate at $E = 10^{17.2}$ eV.

BACKUP SLIDES

TALE Fluorescence Detector

- 10 high-elevation telescopes at the Middle Drum site, looking from 31°-59° in elevation.
- Operate in conjunction with the TA Middle Drum FD.

TALE FD Event

For TALE FD reconstruction: we combined the time and profile fit: simultaneous Profile

Constrained Geometry Fit (PCFG)

originally developed for HiRes monocular analysis

TALE-FD: 2013/10/07 10:45:25.314269 Time, [µs] 1.8 1.6 1.4 2 1.2 30 260 265 270 275 280 285 290 295 300 Azimuth [Degree]

TALE Cherenkov Event

PCGF turns out to work very well on Cherenkov light dominated events

TALE-FD: 2013/10/07 10:45:25.314269 Time, [µs] 1.8 1.6 1.4 2 1.2 30 260 265 270 275 280 285 290 295 300 Azimuth [Degree]

TALE Cherenkov Event

PCGF turns out to work very well on Cherenkov light dominated events

Reconstruction Resolution (Geometry) (3)

- One histogram per decade in energy starting at $E = 10^{15.3} \text{ eV}$
- Shower Track zenith angle (degree)
- Histogram: $\Delta\theta$ (degree)

Reconstructed MC Primary Fractions (Equal fractions thrown)

