Precision Measurement of the Monthly Proton and Helium Fluxes in Cosmic Rays with the Alpha Magnetic Spectrometer on the International Space Station

Nicola Tomassetti Perugia University & INFN

International Cosmic Ray Conference, 36th ICRC – 2019, 24 July – 02 August, Madison, USA

Presented on behalf of the AMS Collaboration In collaboration with ASI under agreement ASI-UniPG 2019-2-HH.0

Sunspot number and the Solar Cycle

The Sun's activity governs the magnetic flux, plasma wind, and CR radiation in heliosphere creating hazardous space weather

WIND

B-FIELD

COSMIC RAY

Sunspot number and the Solar Cycle

The Sun's activity governs the magnetic flux, plasma wind, and CR radiation in heliosphere creating hazardous space weather

WIND

>> Decelerate CRs

B-FIELD

>> Deflect CRs

Influence on the CR flux:

COSMIC RAY

- ✓ Time dependent
- ✓ Space dependent
- ✓ Particle dependent
- **Energy-dependent**

Sunspot number and the Solar Cycle

The Sun's activity governs the magnetic flux, plasma wind, and CR radiation in heliosphere creating hazardous space weather

Solar modulation of GCR: a golden age

The effect is time-, space-, energy-, and particle-dependent **→** need for multichannel, time-resolved & E-resolved GCR data

Time dependence of Z>1 CR nuclei

Solar modulation of GCR: a golden age

Data from

The effect is time-, space-, energy-, and particle-dependent 🔿 need for multichannel, time-resolved & E-resolved GCR data

May

Nov

Nov

Nov

The Alpha Magnetic Spectrometer

- LEO: on the ISS at ~400 km altitude
 Active since May 19th, 2011
- Continuous operation 7/24
 Average trigger rate ~ 700 Hz
- 141+ giga-particles collected
- High acceptance
- Complete particle ID (mass, charge, sign)
- Redundant energy measurements

AMS has collected

142,262,238,906

cosmic ray events

Last update: July 23, 2019, 10:17 AM

AMS-02 results: time evolution of the GCR fluxes

M. Aguilar et al. (AMS-02) Phys. Rev. Lett. 120 (2018) 051101

Measurements of CR proton and helium fluxes for 79 Bartel Rotations (27-days), at rigidity R from 1 GV to 50 GV.

Flux variation behavior at monthly timescales, apparently correlated with the monthly SSN in the solar corona.

relative variations of proton and helium fluxes at the same rigidity

variations of proton and helium fluxes at the same rigidity are not identical¹⁸

AMS-02 results: time- and rigidity- dependence of the p/He ratio

- Nearly constant with time at R > 3 GV
- ✓ Long-term structure appearing at R < 3 GV</p>

Parameteric description

$$r_i(t) = \begin{cases} a_i & t < t_i \\ a_i + b_i(t - t_i) & t \ge t_i, \end{cases}$$

Brocken-line model. Ti= 2015 Feb 28 \pm 42 days.

Recent models for the p/He evolution

- Tomassetti et al. PRL 121, 251104 (2018)
- Corti et al. ApJ 871, 253 (2019)
- Gieseler et al. JGR 122, 10964 (2017)
- Boschini et al. arXiv 1903.07501 (2019)

M. Aguilar et al. PRL 120 (2018) 051101

AMS-02 results: time- and rigidity- dependence of the p/He ratio

Origin of long-term structure in the p/He ratio

- Mass/charge dependence of CR diffusion appearing at low-rigidity
- Differences in the **interstellar spectra** of proton and helium
- Role of 3He and 4He isotopic composition effects
- Improved models of CR modulation are being developed
- Multichannel investigation w/ other data: 3He/4He, C/O

Tomassetti et al. PRL 121, 251104 (2018) Corti et al. ApJ 871, 253 (2019) Gieseler et al. JGR 122, 10964 (2017)

Conclusions

- ✓ Precision CR data provide substantial advance in understanding Solar Modulation.
- ✓ We have presented the monthly fluxes of proton and helium in CRs measured by AMS during ascending phase of Cycle 24, through its maximum, and toward its minimum.
- ✓ The high precision of these data enables us to observe fine time structures in the fluxes, at monthly and yearly time scale phenomena.
- ✓ Prominent time structures are observed in proton and helium up to 40 GV of rigidity.
- ✓ In the p/He ratio, the short-term structures of the fluxes largely cancel out. At R> 3 GV, the p/He ratio is remarkably constant. Below 3 GV, it shows a clear long-term behavior.
- ✓ The long-term behavior of the ratio gives information on CR diffusion in heliosphere, but there are other effects. Modeling challenge: how to make sense of all nuclear data.

backup

Energy spectra

Proton and helium energy spectra for 16 (out of 79) time periods NT+ ASR 2019 [1906.11477]

AMS + Voyager-1

Quantitative inspection of proton and helium fluxes by making a comparison between:

- AMS data collected in low-Earth-orbit.
- Voyager-1 data collected in the interstellar space.

Calculations of local interstellar spectra are shown, in order to smoothly connect the Voyager-1 data (interstellar) with AMS data at high-energy (where solar modulation is negligible).

The green band represents the envelope of the AMS time-series

For the p/He ratio, the band appears tight: The LIS model connects well the AMS and Voyager-1 data. No variation?

0

Explanation for the long-term p/He behavior

- Different p-He LIS and their uncertainties accounted
- Isotopic composition accounted.
- Tested various diffusion coefficients with numerical models

 $K(R) = (v/3)\lambda(R)$ parallel diffusion coefficient $\lambda(R) =$ universal *composition-blind* mean free path

NT+ PRL 121, 251104 (2018) [1811.08909] NT+ Adv Space Res. (2019)[1906.11477]

$$K(R,t) = \frac{\beta c}{3} \lambda(R,t) \equiv k_0(t) \times \beta(R) \times f(R)$$
(*c*)
Time dependence rigidity dependence Rigidity and M/Z dependence:

$$\beta(R) = \frac{R}{\sqrt{R^2 + (M/Z)^2}}$$

At the same value of rigidity R:

Protons are faster than He (4He or 3He)
 Diffusion coefficient of protons is larger

Explanation for the long-term p/He behavior

✓ The p/He time-dependence is *predicted* from a proton-driven model
 ✓ The p/He structure is expected to disappear at relativistic rigidities

The p/He long-term structure is a signature of the universality of the CR mean free paths $\lambda(R)$ ²⁶

Precision Measurement of the Monthly Proton and Helium Fluxes in Cosmic Rays with the Alpha Magnetic Spectrometer on the International Space Station

Nicola Tomassetti Perugia University & INFN

International Cosmic Ray Conference, 36th ICRC 24 July – 02 August 2019, Madison, USA

Presented on behalf of the AMS Collaboration

