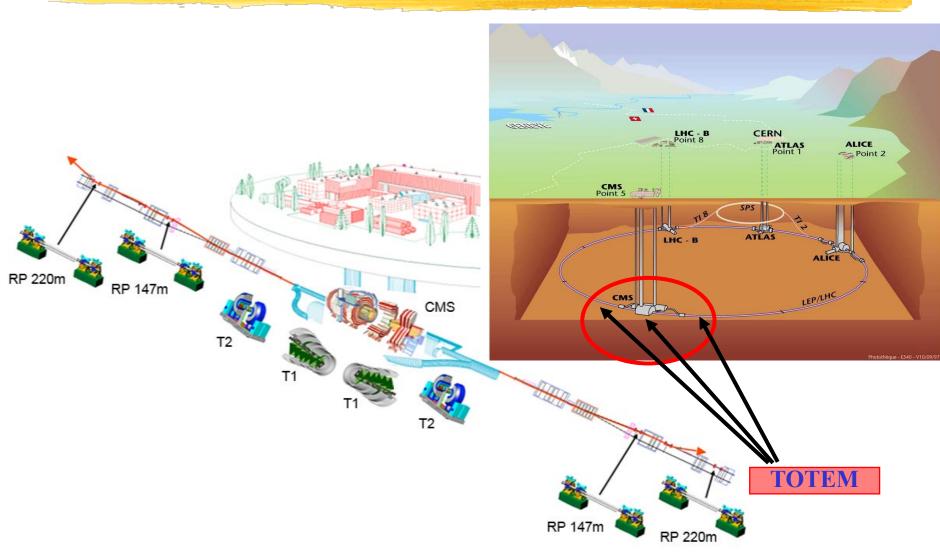
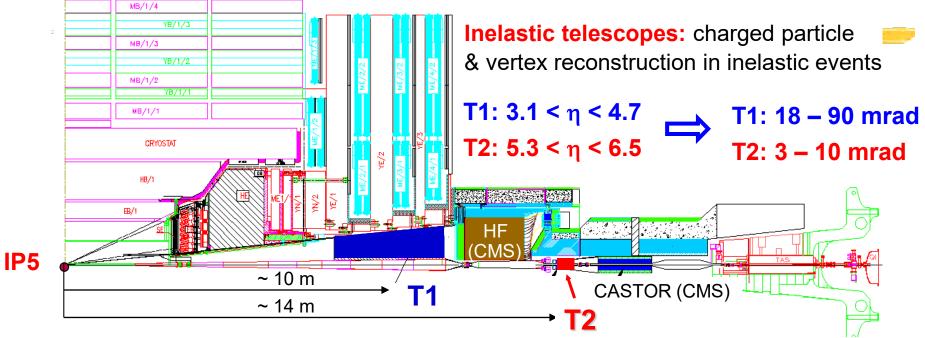
Latest results for Proton-proton Cross Section Measurements with the TOTEM experiment at LHC.

F.S. Cafagna INFN Bari unit On behalf of TOTEM Collaboration

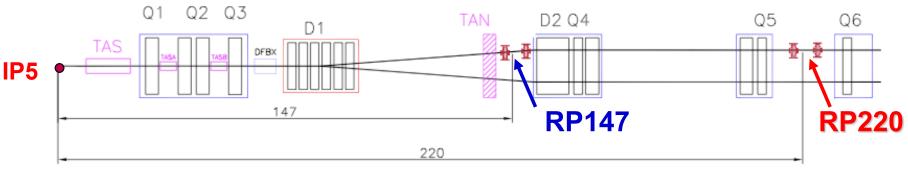

TOTEM Physics goals

- TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measurement at the LHC)
 - σ_{TOT}^{pp} using a luminosity independent method (optical theorem) simultaneously measuring: $\sigma_{tot} = \frac{16\pi}{1 + \rho^2} \frac{(dN_{el}/dt)_{t=0}}{(N_{el} + N_{incl})}$
 - N_{el} down to -t ~10⁻³ GeV²
 - N_{inel} with losses < 3%

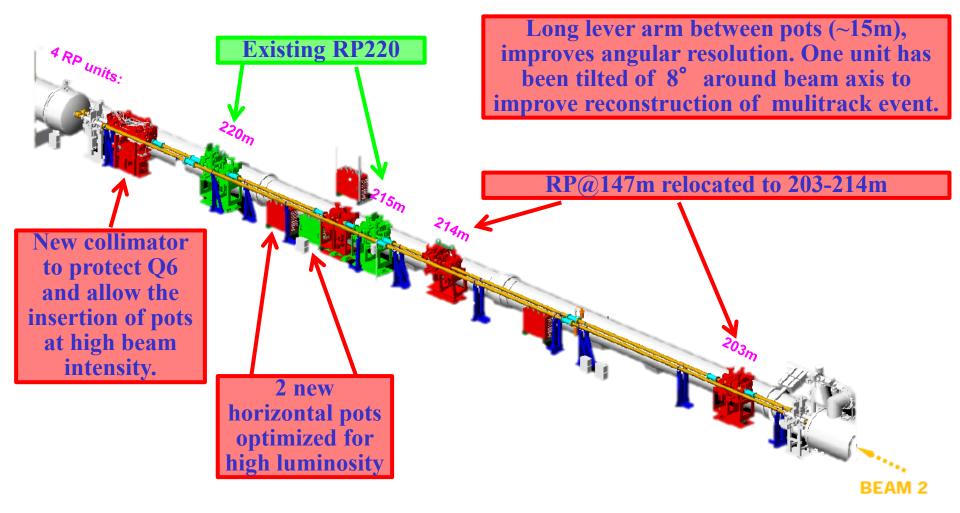
$$\sigma_{tot}^2 = \frac{16\pi}{1+\rho^2} \frac{\mathrm{d}\sigma_{el}}{\mathrm{d}t}|_{t=0}, \ \sigma_{inel} = \sigma_{tot} - \sigma_{el}.$$


- Elastic pp scattering in the range $10^{-3} < |t| \sim (p\theta)^2 < 10 \text{ GeV}^2$
- Soft diffraction (SD and DPE)
- Particle flow in the forward region (cosmic ray MC validation/tuning)

TOTEM Experiment LHC Run I


27/07/2019

Experimental Setup @ IP5 LHC Run I


LHC RunI layout

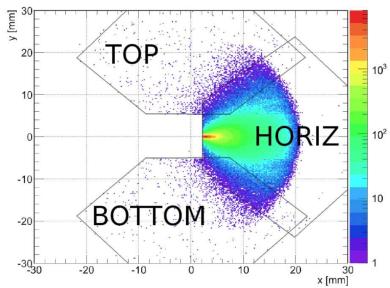
Roman Pots: measure elastic & diffractive protons close to outgoing beam

^{1.0.} Ouragina, 2022 1 TOTAO 2010, Madiour (11), 00/1

TOTEM Program for RUN II

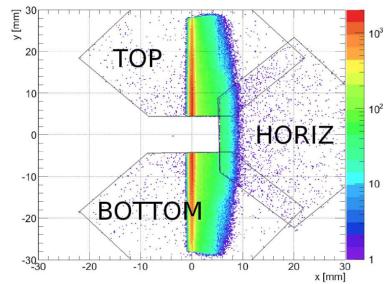
27/07/2019

TOTEM Physics goals


- TOTEM (TOTal cross section, Elastic scattering and diffraction dissociation Measurement at the LHC)
 - σ_{TOT}^{pp} using a luminosity independent method (optical theorem) simultaneously measuring: $\sigma_{tot} = \frac{16\pi}{1+\rho^2} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{incl})}$
 - N_{el} down to -t ~10⁻³ GeV²
 - N_{inel} with losses < 3%

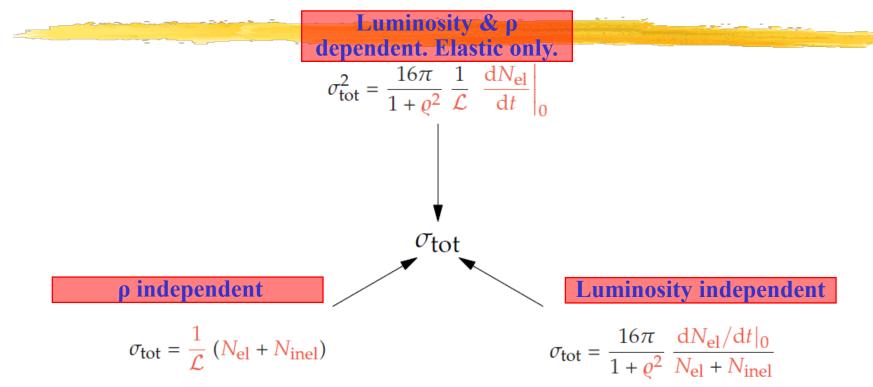
$$\sigma_{tot}^2 = \frac{16\pi}{1+\rho^2} \frac{\mathrm{d}\sigma_{el}}{\mathrm{d}t}|_{t=0}, \ \sigma_{inel} = \sigma_{tot} - \sigma_{el}.$$

- Elastic pp scattering in the range $10^{-3} < |t| \sim (p\theta)^2 < 10 \text{ GeV}^2$
- Soft diffraction (SD and DPE)
- Particle flow in the forward region (cosmic ray MC validation/tuning)
- To access to the smaller t-value region, the colliding beams must have a beam divergence of not more than a few μ-rad. This can be obtained by either **increasing the beta function value**, β*, or by reducing the beam emittance, ε (beam divergence = √ε/β*)


LHC Optics

 $3^* = 0.55 \text{ m}$ (low $\beta^* = \text{standard at LHC}$)

- Diffractive protons are mainly in the horizontal pot
- Elastic protons in the vertical pot near X~0


 $\beta^* = 90$ m (special optic for RP runs)

- Diffractive protons are mainly in the vertical pot.
- Elastic protons in a narrow band at X~0

27/07/2019

Cross-sections measurement

- N_{inel} are measured by T1 and T2 telescopes, while N_{el} by the RomanPots detectors.
- Consistency checks using the three independent methods.

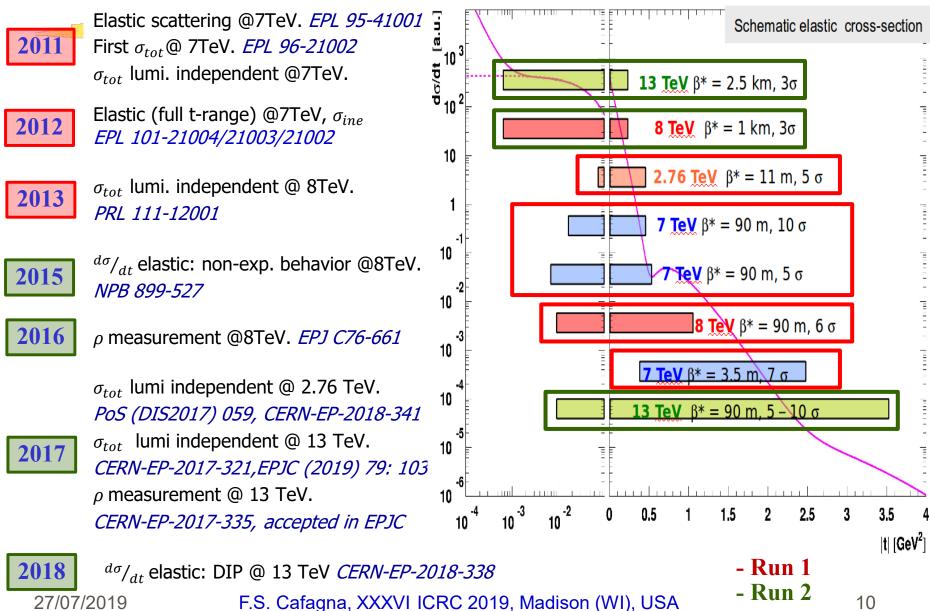
27/07/2019

ρ **measurement**

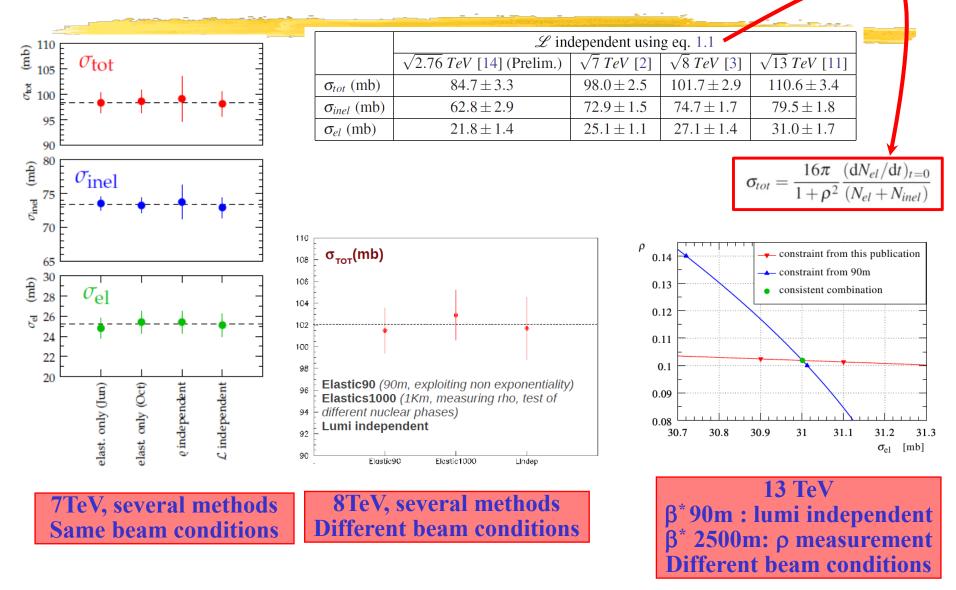
- Elastic scattering at very low-t, the Coulomb-Nuclear Interference region (CNI).
- The differential cross section is sensitive to the phase of the nuclear amplitude:

$$\frac{d\sigma}{dt} \sim |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{C}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{N}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{N}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{N}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{N}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{N}(t) + \mathcal{A}^{N}(t) \left(1 - \alpha G(t)\right)|^{2} \quad \frac{d\sigma}{dt} \propto |\mathcal{A}^{N}(t) = |\mathcal{A$$

 In the CNI both modulus (constrained by measurement in the hadronic t-region) and phase (t-dependent) of nuclear amplitude can be tested to determine:

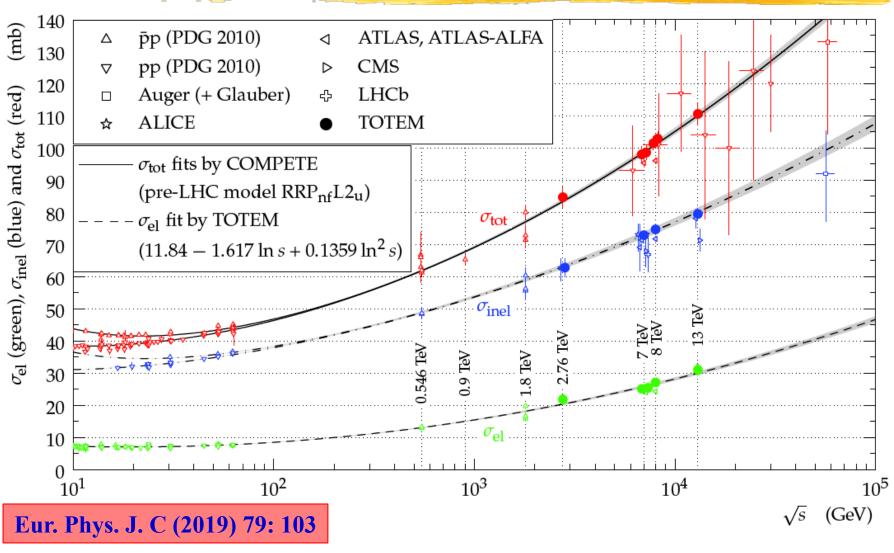

$$\rho \equiv \cot \arg \mathcal{A}^{N}(0) = \frac{\Re \mathcal{A}^{N}(0)}{\Im \mathcal{A}^{N}(0)}$$

27/07/2019

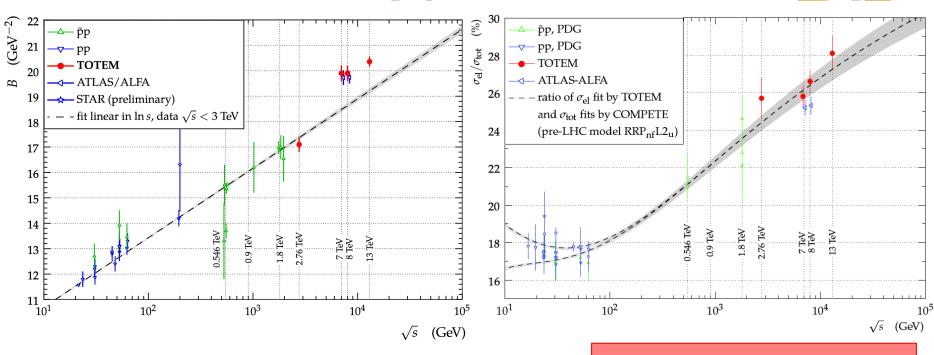

F.S. Cafagna, XXXVI ICRC 2019, Madison (WI), USA

.2

σ related measurements in Totem



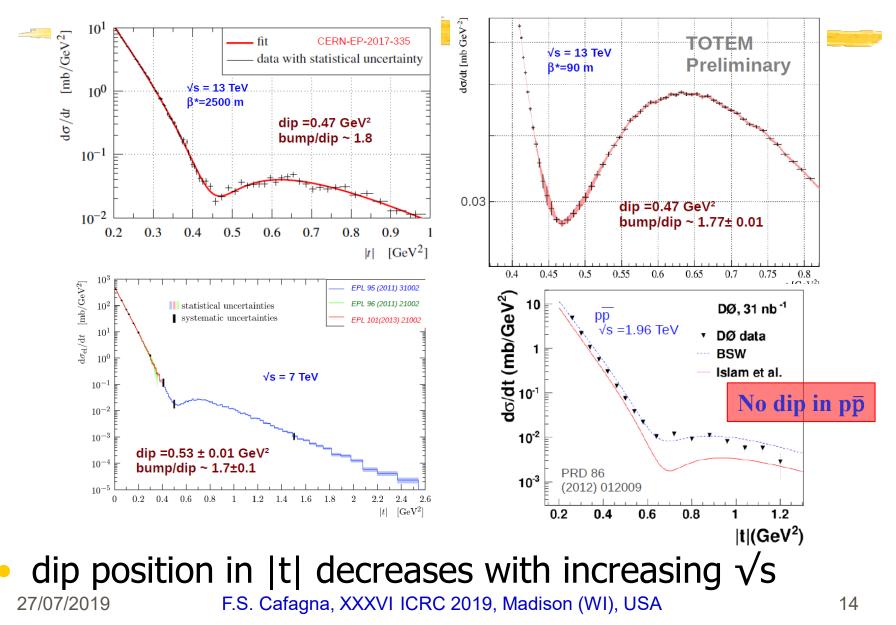
Cross-section measurements


27/07/2019

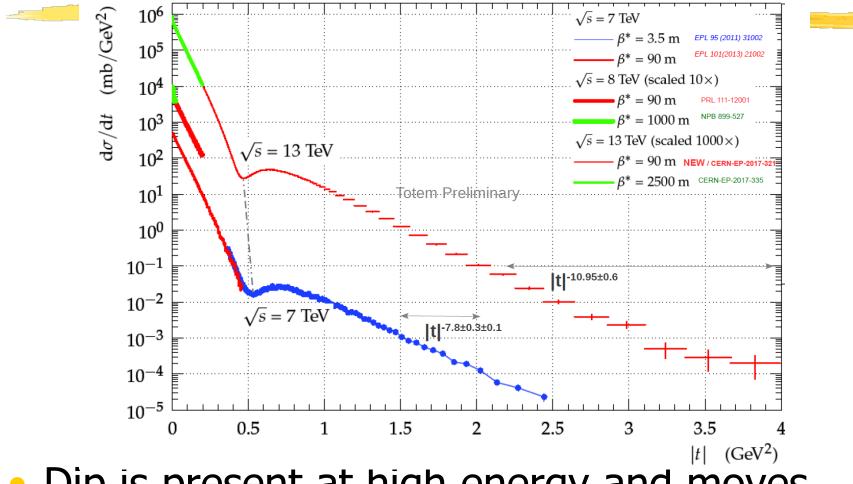
Cross-section measurements

27/07/2019

Cross-section measurements



Eur. Phys. J. C (2019) 79: 103


- The exponential slope, *B*, increases with \sqrt{s} . The $\log s$ behavior is not linear for $\sqrt{s}>3$ TeV. The "diffraction cone" shrinkage speed up with the collision energy.
- The increase of σ_{el}/σ_{TOT} with energy is confirmed also at LHC.

27/07/2019

Elastic measurements: dip @13TeV

Elastic measurements: dip & high t

Dip is present at high energy and moves.

• No structure found at high t.

27/07/2019

Cross section: 13TeV analysis

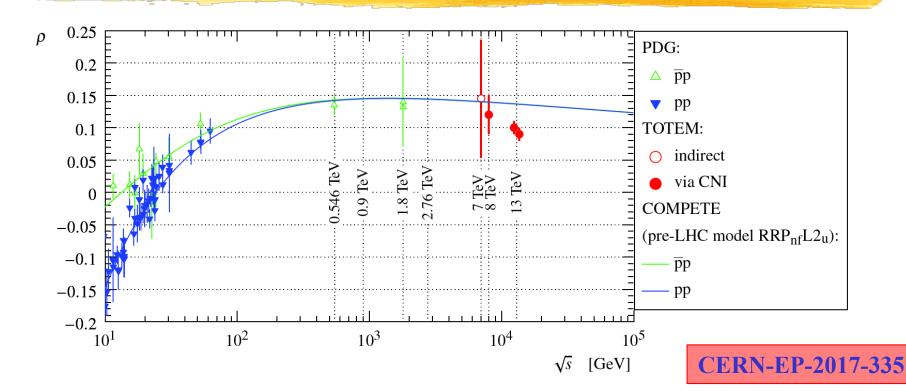
• To verify the results of the luminosity independent method σ_{tot} and ρ , from $\beta^* = 2.5$ km, has been computed using QED normalization method.

• Three approaches (all using Coulomb-nuclear interference):

1.normalization fixed using $\beta^* = 90$ m data from lumi-independent method.

2.partial QED normalization with a χ^2 term corresponding to the lumiindependent result.

3.full QED normalization.

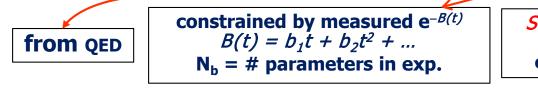

All σ_{tot} and ρ results consistent within uncertainties: σ_{tot} results 110.3 ± 3.5 mb and 109.3 ± 3.5 mb, obtained with fully independent methods and disjoint data sets: should be averaged and should lead to smaller uncertainty: ~ 110.5 ± 2.4 mb.

data	method	ρ	σ_{tot} [mb]
$\beta^* = 90 \mathrm{m}$	Ref. [6]	-	110.6 ± 3.4
$\beta^* = 2500 \mathrm{m}$	approach 1	0.09 ± 0.01	111.8 ± 3.2
	approach 2	0.09 ± 0.01	111.3 ± 3.2
	approach 3	$0.08(5) \pm 0.01$	110.3 ± 3.5
	approach 3 (single fit)	0.10 ± 0.01	109.3 ± 3.5
$\beta^* = 90 \text{ and } 2500 \text{ m}$	Ref. [6] \oplus approach 3		110.5 ± 2.4

CERN-EP-2017-335-v3, accepted in EPJ C

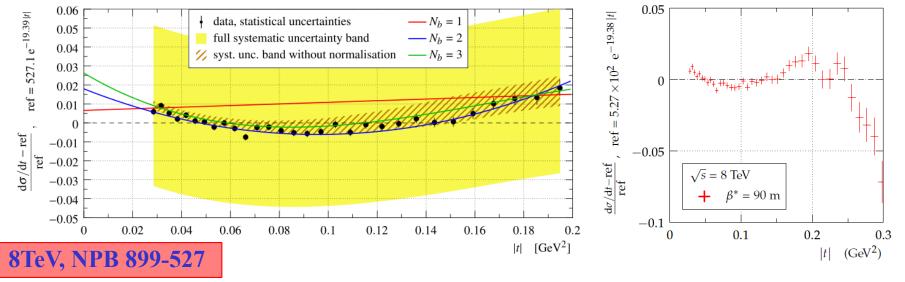
27/07/2019

Coulomb Nuclear interference: ρ


• First LHC determination from Coulomb-hadronic interference at $\sqrt{s=8TeV}$: $\rho = 0.12\pm0.03$. Uncertainty still too high due to the low statistics.

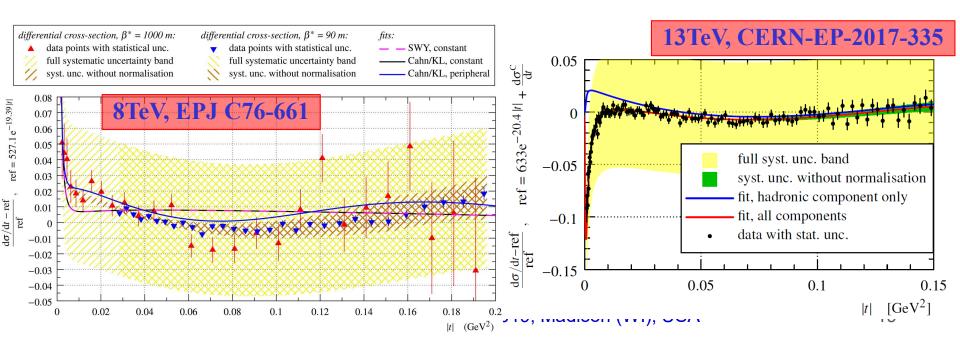
 At 13 TeV : sample with very high statistics allows an unprecedented precision. The new points are too low respect to the prediction.
 27/07/2019 F.S. Cafagna, XXXVI ICRC 2019, Madis

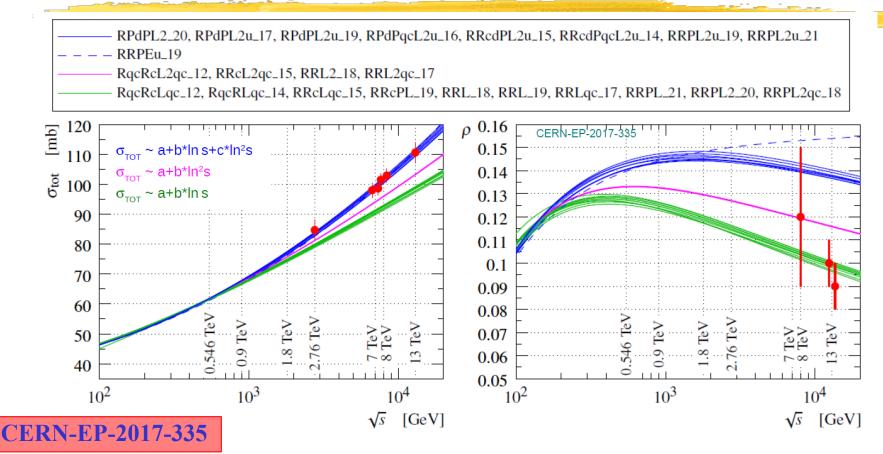
	$ t _{max} = 0.07 \text{ GeV}^2$		$ t _{max} = 0.15 \text{ GeV}^2$	
Nb	χ^2 /ndf	ρ	χ^2 /ndf	ρ
1	0.7	$\textbf{0.09} \pm \textbf{0.01}$	2.6	—
2	0.6	0.10 ± 0.01	1.0	0.09 ± 0.01
3	0.6	$\textbf{0.09} \pm \textbf{0.01}$	0.9	$\textbf{0.10} \pm \textbf{0.01}$


Elastic scattering: Non-exponential behavior at low-t

• High-statistics data with β^* =90m at \sqrt{s} = 8 & 13TeV, can be used to compare differential elastic cross-section, with a pure exponential $d\sigma/dt \propto |F^{C+H}|^2$ = Coulomb + hadronic + "interference"

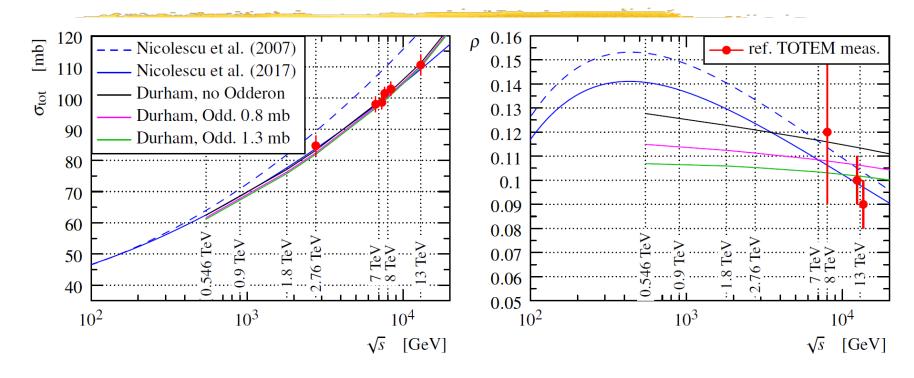
Simplified West-Yennie (SWY): often used "standard", only compatible with pure exponential amplitude & constant phase


• Now exclude Coulomb-hadronic interference with constant phase & constant exponential slope for hadronic amplitude (N_b = 1) at >7 σ using same data \Rightarrow ruling out SWY approach


27/07/2019

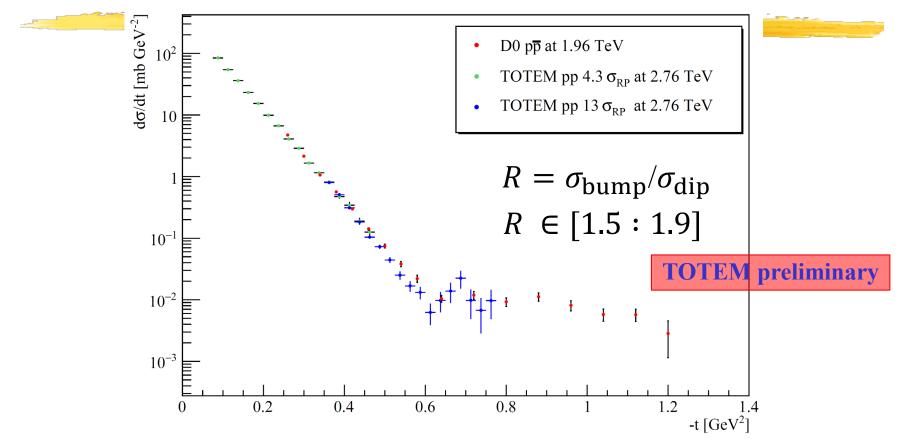
Elastic scattering: Non-exponential behavior at low-t

- Already observed at ISR and SPS: confirmed at LHC energies a change of slope ~ 0.1GeV² with faster decrease |t|>0.2 GeV²
- The pure exponential behavior of nuclear amplitude is excluded (constant phase excluded, peripheral phase disfavored)
- Non exponential (N_b=3) with both constant and peripheral phase is compatible with data.


$σ_{tot} & ρ: model comparisons$

• None of the COMPETE models is able to describe σ_{tot} and ρ at the same time.

27/07/2019


$σ_{tot}$ & ρ: odderon hints?

CERN-EP-2017-335

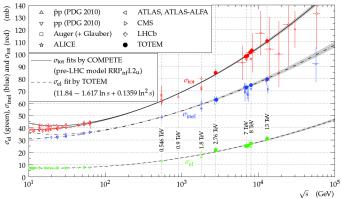
- t-channel exchange of a colourless 3-gluon bound state (JPC = 1--) could decrease ρ in pp collisions at large energy.

$σ_{tot}$ & ρ: odderon hints?

•Theoretical prediction for R @ 2.76 TeV:

•No-odderon model -> 1.16 [Durham]

•Odderon models -> ~1.5 [Nicolescu] - 1.82 [Durham]


•Physics goal is to probe differences of pp and $p\overline{p}$ differential cross section at the TeV energy scale. Work in progress with D0 collaboration.

•These TOTEM preliminary results support the existence of a 3-gluons odderon exchange

Conclusion

- TOTEM has made extensive measures related to σ_{tot} and elastic scattering at LHC.
- The (experimental) hints of odd-state seems confined in the sensitivity in the t-channel, although several theories predict the existence of such object (Odderon, 3g-bound state, vector glueball).
- TOTEM contributions (observed/confirmed) to the predictions:
 - the growth rate of the total cross-section;
 - decrease of ρ at high energies;
 - diffractive dip in the proton-proton elastic t-distribution;
 - the deviation of the elastic differential cross-section from a pure exponential;
 - the deviation of the elastic diffractive slope, B, from a linear log(s) dependence;
 - the variation of the nuclear phase as a function of t;
 - the large-|t | power-law behavior of the elastic t -distribution with no oscillatory behavior.
- What next:
 - Precise measurement of ρ at low energy (900 GeV);
 - σ_{tot} at 14TeV (Run III).

THANKS!!!

27/07/2019