Trinity

An Air-Shower Imaging System for the Detection of Ultrahigh Energy Neutrinos

Phys. Rev. D 99, 083012 (2019) and Astro2020 white paper arXiv:1907.08727

Anthony Brown, Durham, UK Abraham D. Falcone, Penn state Mosè Mariotti, Uni. Padova, Italy Ignacio Taboada, Georgia Tech

Nepomuk Otte

School of Physics & Center for Relativistic Astrophysics

Three year sensitivity

 Excellent background suppression

UHE Neutrino Searches with Air-Shower Imaging Telescopes

MAGIC (2018), Astropart.Phys.102,77-88.

UHE Neutrino Searches with Air-Shower Imaging Telescopes

Ashra-1 PoS(ICRC2019)970

UHE Tau initiated Air-Shower Fun Facts

Air Showers for Lovers

9

Red Sensitive Silicon Photomultipliers

NO et al. EUSO-SPB2 PoS(ICRC2019)977

Detected Cherenkov Light

Acceptance vs. Light Collection Area

How much Field of View?

Full image containment is required.

Sensitivity vs. FoV above Horizon

Sensitivity vs. FoV below Horizon

Optics

Based on J. Cortina et al., Astrop. Physics 72 (2016) 46

●FoV 5° X 60°.

●5.6 m focal length.

●0.3° optical PSF.

- 20 mm Winston cones coupled to 9 mm SiPMs.
- 3,300 pixel camera.
- •68 m² mirror area \rightarrow **16 m²** in any direction.

Rotates in elevation.

- Thin-glass replica mirror technology ~\$2k/m².
- Implementation based on MAGIC structure.
- •\$170k for one telescope (excl. camera).

Signal Chain

Same as in NO et al. EUSO-SPB2 PoS(ICRC2019)977

MUSIC: preamp ASIC developed for IACTs.

AGET digitizer: 100MS/s, switch capacitor readout, 12 bit.

•\$100 per channel \rightarrow \$330k per camera

Tested with picosecond laser flashing Hamamatsu S14520 SiPM + MUSIC + AGET

Nepomuk Otte

Site

- Needs to oversee a remote area.
- Modest light contamination is ok.
 - Images happen on
 <100ns timescales.
- Ashra Site; BEACON Test site; Frisco Peak, UT.

View from Frisco Peak, UT

Conclusions

- Air-shower imaging is a viable technique to search for UHE neutrinos.
- Trinity is optimized to detect distant UHE tau showers.
- Cost effective solutions exist for the optics and the camera (~\$3M for 360°).
- Developing of main components is ongoing.
- Deploy prototype next year?

Backup

Triggered Viewing Angles

Spread of Photon Arrival Times

Acceptance

Impact of Night Sky Background

PDE Hamamatsu S14520

Thin-Glass Mirrors

