Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube

Tianlu Yuan for the IceCube collaboration ICRC 2019 @Madison, WI
July 25, 2019

IceCube

Muons and neutrinos

Event type	Rate
Atmospheric μ	~3 kHz
Atmospheric ν	~100k per year
Astrophysical ν	~100 per year

Detection principles

Neutrino interacts via weak force with targets in ice

• At IceCube energies, primarily deep-inelastic scattering (DIS) off nucleons

Nucleon breaks apart; outgoing particles may be charged Charged particles emit Cherenkov radiation detectable by PMTs

Event topologies

CC muon neutrino

$$\nu_{\mu} + N \rightarrow \mu + X$$

track (data)

angular resolution ~ 0.5° energy resolution ~ x2

NC or CC electron neutrino

$$\nu_e + N \rightarrow e + X$$

 $\nu_x + N \rightarrow \nu_x + X$

cascade (data)

angular resolution ~ 10° energy resolution ~ 15%

CC tau neutrino

$$\nu_{\tau} + N \rightarrow \tau + X$$

"double-cascade" (simulation)

~2 expected in 6 years

TeV+ neutrino-nucleon cross section

Up to now two published results

- 1. Using 79-string IceCube **upgoing** muons *Nature* **551**(2017) 596-600
- 2. Using public data from 6yr IceCube cascades PRL 122(2019) 041101

This talk: cross section using IceCube HESE sample with 7.5 years of data

 Ternary PIDs for three neutrino flavors, full-sky information, improved detector modeling and background calculations

High energy starting event (HESE) selection

Contained search at high energies

Cut on $Q_{tot} > 6000$ p.e.

Sensitive above 60 TeV

Outer layer acts as active veto of atmospheric muon and indirect veto of atmospheric neutrinos accompanied by sibling muons

Neutrinos in a haystack

Large muon background rejected by veto

Event distribution in HESE-7.5

102 events, with **60 events >60 TeV**Fit performed for events above 60 TeV

Updates:

- MC-likelihood JHEP06(2019) 030
- Newer ice model and reconstruction
- Updated atmospheric-ν estimate JCAP 1807 (2018) no.07, 047
- Additional systematics treatment

Above 60 TeV: 16 new events in last 1.5 years

In-Earth flux attenuation

High-energy neutrinos interact in the Earth \rightarrow flux attenuation Depends on energy E_{ν} and direction θ_{ν}

In-Earth flux attenuation

High-energy neutrinos interact in the Earth \rightarrow flux attenuation Depends on energy E_{ν} and direction θ_{ν} and cross section

Expected distributions and data

Assuming SPL flux with floating normalization can **measure** cross section

N. sky: Flux attenuation depends on cross section, energy, zenith

Analysis method

Four bins as a function of E_{ν} with edges at 60 TeV, 100 TeV, 200 TeV, 500 TeV, and 10 PeV

• Denoted as: x_0 , x_1 , x_2 , x_3

Scale nominal neutrino-nucleon cross section (CSMS) in each bin separately

• Assume: fixed σ_{CC}/σ_{NC} ratio, fixed $\sigma_{\nu}/\sigma_{\overline{\nu}}$ ratio, single-power-law flux

Varied cross section leads to different MC expectations

Profile-Ilh scan for frequentist result or **MCMC** for Bayesian posterior

Systematics and priors/constraints

Parameter	Constraint/Prior	Range
Astrophysical neutrino flux:		
$\Phi_{ t astro}$	1	$[0,\infty)$
$\gamma_{ t astro}$	2.0 ± 1.0 ($-\infty,\infty)$
Atmospheric neutrino flux:		
$\Phi_{ ext{conv}}$	1.0 ± 0.4	$[0,\infty)$
$\Phi_{ t prompt}$	1.0 ± 3.0	L / /
π/K	1.0 ± 0.1 (L /
$2 \overset{'}{ u} / \left(u + ar{ u} ight)_{ exttt{atmo}}$	1.0 ± 0.1	[0,2]
Cosmic ray flux:		
$\Delta \gamma_{ exttt{CR}}$	-0.05 ± 0.05 ($-\infty,\infty$
$\overline{\Phi}_{\mu}$	1.0 ± 0.5	,

High-energy neutrino cross section

Likelihood and posterior

Conclusions

High-energy starting event sample with 7.5 years of data with several updates and improvements

Neutrino-nucleon cross section measured via forward-folding likelihood

Frequentist and Bayesian results obtained

Paper in preparation

Backups

Atmospheric neutrinos

Conventional atmospheric: Parent particle is pion or kaon; longer lifetime

Prompt atmospheric: Parent particle contains a charm quark; short lifetime

Signal for neutrino oscillation measurements

Background for astrophysical neutrino searches

Astrophysical neutrinos as a window to our Universe

Atmospheric neutrino passing fractions

Pile-up MC challenging

Passing fraction: ratio of solid to dotted lines

•
$$\mathcal{P}_{pass}(E_{\nu}, \theta_{z}) = \frac{\phi_{\nu}^{pass}(E_{\nu}, \theta_{z})}{\phi_{\nu}(E_{\nu}, \theta_{z})}$$

• Apply via **reweighting** MC atmospheric neutrinos

Breaks degeneracy between astrophysical and prompt fluxes

Drives current bound on prompt

Earth surface

Flux correlations

