

Search for magnetically-induced signatures in the arrival directions of Ultra-High Energy Cosmic Rays measured by the Pierre Auger Observatory

Marcus Wirtz for the Pierre Auger Collaboration

ICRC 2019, Madison – July 27, 2019

Outline

- 1) Description of methods
 - A) Multiplet search correlation between energy and deflection
 - B) Thrust ratio measure of elongation of a pattern
- 2) Target selection starburst galaxies & active galactic nuclei
- 3) Benchmark simulation
- 4) Sensitivity of the methods
- 5) Pierre Auger Observatory / data set
- 6) Application on data
 - A) Targeted search B) Blind search

Multiplet search

• Relation between arrival direction $\vec{\Theta}$, source direction $\vec{\Theta}_s$ and magnetic field \vec{B} :

$$\vec{\Theta} = \vec{\Theta}_s + \frac{\vec{D}(\vec{\Theta}_s)}{E}$$
 with $\vec{D}(\vec{\Theta}_s) = Ze \int_0^L d\vec{l} \times \vec{B}(\vec{l})$

• In suitable coordinate system (sketch):

$$u \simeq u_s + \frac{D(\vec{\Theta}_s)}{E}$$

- Find set of cosmic rays that fulfill:
 - Correlation coefficient C(u, 1/E) > 0.9
 - Transverse spread $\max(|w_i \langle w \rangle|) < 1.5^{\circ}$

Thrust ratio

• Principal component analysis in region of interest (ROI), radius: 0.3 rad

$$T_k = \max_{\vec{n}_k} \left(\frac{\sum_i |\omega_i^{-1} \vec{p}_i \cdot \vec{n}_k|}{\sum_i |\omega_i^{-1} \vec{p}_i|} \right) \longrightarrow \text{strength of collimation along axis } \vec{n}_k$$

- Successively maximize T_k : $T_1 \ge T_2 \ge T_3$
- Ratio T_2/T_3 is a measure of the elongation of a pattern

Isotropy: $T_2/T_3 \approx 1$ Overdensity: $T_2/T_3 \approx 1$

Elongated: $T_2/T_3 > 1$

Target selection

- Probe catalogs of starburst galaxies (SBGs) and active galactic nuclei (AGNs)
- Selection is based on attenuation of helium at 40 EeV and given distance:

AGN: Cen A, M87, Fornax A

SBG: NGC 253, NGC 4945, Circinus, M83, NGC 4631, NGC 1808, NGC 1068

Benchmark simulations - Galactic magnetic field

- Test sensitivity of methods with simulation of arrival directions
- Upper and lower estimate of turbulence, two different models of GMF

GMF-A

- Model of Jansson & Farrar (2012), including striated / turbulent fields
- Coherence length = 60 pc

GMF-B

- Large uncertainty on turbulence (Planck)
- No striated component / Kolmogorov field down-scaled amplitude to value of 1/3

Benchmark simulations – Arrivals from CenA

Scenarios

 $E_{min} = 40 \text{ EeV}$ $N_{CR} = 900$

Composition: He: [40, 200] EeV

Energy spectrum 4000 Measured Simulated 3000 stunos 2000 1000 He 19.25 19.75 20.00 20.25 19.00 19.50 20.50 log10(E / eV)

 $E_{min} = 20 \text{ EeV}$ $N_{CR} = 6000$

<u>Composition</u>: p: [20, 40] EeV He: [40, 80] EeV

Expected sensitivity – Multiplet search

- Only applicable on 40 EeV energy cut
- Above 9 injected signal cosmic rays per source to obtain 3 sigma significance (1% signal fraction)
- Depends on source direction
- Sensitivity benefits from weaker turbulent field (GMF-B)

Above 1% signal fraction to obtain 3 sigma

Expected sensitivity – Thrust ratio

- Thrust ratio works better at lower energy threshold, E > 20 EeV (at 40 EeV worse than multiplets)
- Signal fraction above 0.7% for 3 sigma confidence level
- Similar performance for GMF-A and GMF-B models (robustness)

Above 0.7% signal fraction to obtain 3 sigma

Data set

 Data taken at the Pierre Auger Observatory between 1 January 2004 and 31 August 2018

- Surface detector:
 1660 water-Cherenkov stations
- Fluorescence detector:27 telescopes at four different sites
- Events with reconstructed zenith angle below 80°

Energy cuts

- **E > 20 EeV**: 6568 events
- **E > 40 EeV**: 1119 events

Pierre Auger Observatory, Mendoza, Argentina

Targeted search

Isotropic chance probabilities					
Target	Multiplet (40 EeV)	Thrust-ratio (20 EeV)	Thrust-ratio (40 EeV)		
Cen A	1.2×10^{-2}	0.75	0.42		
M87	0.61	0.44	0.85		
Fornax A	0.96	0.21	1.9×10^{-2}		
NGC 253	0.54	0.98	0.88		
NGC 4945	0.25	2.9×10^{-2}	3.7×10^{-2}		
Circinus	0.99	0.82	0.58		
M83	0.20	0.14	0.54		
NGC 4631	_	0.59	0.85		
NGC 1808	0.61	0.63	0.77		
NGC 1068	0.75	6.0×10^{-2}	0.29		

- There is no significant pattern found in the arrival directions for the multiplet search and the thrust ratio
- Multiplet search: lowest p-value is 1.2% in the Cen A region
- Thrust-ratio: lowest p-value is 2% in the Fornax A region

Blind search – Multiplets

Multiplet search also applied in an all-sky scan above 40 EeV

Multiplicity	Number of multiplets	Deflection power	p-value
10	1	$(8.0 \pm 1.3) \deg 100 EV$	0.114
9	1	$(12 \pm 2) \text{ deg } 100 \text{ EV}$	0.191

Summary

- Searched for source signatures with two methods in data of the Pierre Auger Observatory above 20 EeV (6568 events) and 40 EeV (1119 events)
- <u>Multiplet search</u>: correlation of deflection and inverse energy
- <u>Thrust ratio</u>: measure for elongation, constructed by principal component analysis

- Applied on: targeted search (AGN and SBG candidates), both methods
 all-sky search above 40 EeV, multiplet search
- No significant pattern has been found in data; lowest isotropic chance probabilities were found with 1% (2%) with the multiplet (thrust) search

Backup

Multiplet method: GMF-A vs GMF-B

Multiplet method: study of hyperparameters

Source ID: 0=CenA, 1=M87, 2=FornaxA, 3=NGC253, 4=NGC4945, 5=Circinus, 6=M83, 7=NGC1808, 8=NGC1068, 9=NGC4631

Thrust ratio on GMF-A vs. GMF-B

A) JF12 + stri + turb (
$$B_{rms}=1$$
)

B) JF12 + turb (
$$B_{rms}=1/3$$
)

Less turbulence, performance gets a bit better However, effect not very big (thrust observable robust)

ROI size scan for Thrust – JF12 Full, B_{RMS}=1

For ROI radius r = 0.3 rad

There is no clear best choice as it depends on the deflection power

Depends on direction in sky (and GMT model)

Overall r=0.3 rad seems to be OK

Target selection

- 3FHL: The Third Catalog of HardFermi-LAT Sources (Fermi-Lat Collaboration)
- Distances up to 250 Mpc
- 33 sources before selection
- Cen A, M87, Fornax A

- Merged sample from (Ackermann 2012) and (Becker 2009) + Circinius
- Distances up to 250 Mpc
- 32 sources before selection
- NGC 253, NGC 4945, Circinus, M83, NGC 4631, NGC 1808, NGC 1068

