

Mass Composition of Cosmic Rays with Energies above $10^{17.2}$ eV from the Hybrid Data of the Pierre Auger Observatory

Alexey Yushkov* for the Pierre Auger Observatory[†]

^{*} Institute of Physics of the Czech Academy of Sciences

[†] Av. San Martín Norte 304, 5613 Malargüe, Argentina http://www.auger.org/archive/authors.icrc.2019.html

Fluorescence Detector

High elevation Auger telescopes

3 telescopes at Coihueco site

range of X_{max} analysis: $10^{17.2} \text{ eV} < E < 10^{18.1} \text{ eV}$

data: same to ICRC (2017) [J. Bellido, PoS(ICRC2017)506]

Standard telescopes

24 telescopes at 4 sites

range of X_{max} analysis: $E > 10^{17.8} \text{ eV}$

elevation $30^{\circ} - 58^{\circ}$ elevation $1.5^{\circ} - 30^{\circ}$

Rate of change of X_{max} with energy

One of the most reliable observables for mass composition analysis

simulations: $\approx 60 \ [g \ cm^{-2}/decade]$ for constant compositions

Composition is getting lighter below $E_0 \approx 2$ EeV and heavier afterwards

X_{max} moments: data vs simulations

Above $E_0 \approx$ 2 EeV both X_{max} moments are becoming compatible to MC predictions for heavier nuclei

Model-independent decrease of $\sigma(\ln A)$ until $\sim 10^{18.7}~{\rm eV}$

Less model-dependent constraints on $\sigma(\ln A)$ near the ankle?

heavier nuclei produce shallower showers with larger signal (more muons) general characteristics of air showers / minor model dependence

signal at 1000 m from the core scaled to 10 EeV, 38°

heavier nuclei produce shallower showers with larger signal (more muons) general characteristics of air showers / minor model dependence

Correlation for EPOS-LHC

pure beams $\sigma(\ln A) = 0$

+0.04 for proton

+0.12 for iron

heavier nuclei produce shallower showers with larger signal (more muons) general characteristics of air showers / minor model dependence

Correlation for EPOS-LHC

pure beams $\sigma(\ln A) = 0$

+0.04 for proton

+0.12 for iron

maximal mixing $\sigma(\ln A) \approx 2$

-0.35 for p/Fe= 1/1

heavier nuclei produce shallower showers with larger signal (more muons) general characteristics of air showers / minor model dependence

Correlation for EPOS-LHC pure beams $\sigma(\ln A)=0$ +0.04 for proton +0.12 for iron maximal mixing $\sigma(\ln A)\approx 2$

-0.35 for p/Fe= 1/1

More negative correlation \Rightarrow more mixed composition

Correlation in data compared to pure beams

primary composition near the ankle is mixed nuclei with A>4 needed to explain data

systematics plays only a minor role $\sigma_{syst}(r_{\rm G}) \lesssim ^{+0.01}_{-0.02}$

Dependence of correlation on $\sigma(\ln A)$

Constraints on $\sigma(\ln A)$ from observed $r_{\rm G}(X_{ m max}^*,\,S_{38}^*)$

Constraints on $\sigma(\ln A)$ from observed $r_{\rm G}(X_{\rm max}^*,\,S_{38}^*)$

Constraints on $\sigma(\ln A)$ from observed $r_{\rm G}(X_{\rm max}^*,\,S_{38}^*)$

new data are compatible to [Auger PLB 762 (2016)]: $\chi^2/\mathrm{ndf} = 5.4/4$ (p-value = 0.25)

above the ankle $\lg(E/\mathrm{eV}) > 18.7$ data are compatible to decrease of $\sigma(\ln A)$

Results (independent of the hadronic models)

X_{\max} analysis

 $\langle \ln A \rangle$: decreasing up to 2 EeV and increasing afterwards

 $\sigma(\ln A)$: decreasing up to the ankle, more constant at higher energies

$$r_{\rm G}(X_{\rm max}^*, S_{38}^*)$$
 analysis for $\lg(E/{\rm eV}) = 18.5 - 19.0$

below the ankle the correlation in data is significantly, at 6.4σ from zero, negative

pure compositions and proton-helium mixes (all having $r_{
m G}>0$) are excluded

data are compatible to mixed compositions with $\sigma(\ln A) = 0.85 - 1.60$

above the ankle there are indications on decrease of $\sigma(\ln A)$ (more statistics is needed)

backups

The Pierre Auger Observatory

Fluorescence detector (FD) [longitudinal profile] duty cycle 15%

24 + 3 fluorescence telescopes at 4 locations

Surface detector (SD) [lateral distribution] duty cycle 100 %

1660 water-Cherenkov stations at 1500 m spacing, 3000 km²

61 water-Cherenkov stations at 750 m spacing, 23.5 km²

Nucl. Instrum. Meth. A798 (2015) 172

Fluorescence Detector

FD telescopes at Los Morados

Fluorescence Detector

FD telescopes at Los Morados

High Elevation Auger Telescopes (HEAT)

Detection of showers with $E < 10^{18}$ eV

High Elevation Auger Telescopes (HEAT)

Detection of showers with $E < 10^{18}$ eV

Surface detector

Water-Cherenkov station

Surface detector

mass composition sensitivity: muons contribute from 40 to 90% to S(1000) depending on zenith angle